• Title/Summary/Keyword: Zinc anode

Search Result 64, Processing Time 0.037 seconds

Transparent Anodic Properties of In-doped ZnO thin Films for Organic Light Emitting Devices (In 도핑된 ZnO 박막의 투명 전극과 유기 발광 다이오드 특성)

  • Park, Young-Ran;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.303-307
    • /
    • 2007
  • Transparent In-doped zinc oxide (IZO) thin films are deposited with variation of pulsed DC power at Ar atmosphere on coming 7059 glass substrate by pulsed DC magnetron sputtering. A c-axis oriented IZO thin films were grown in perpendicular to the substrate. The optical transmittance spectra showed high transmittance of over 80% in the UV-visible region and exhibited the absorption edge of about 350 nm. Also, the IZO films exhibited the resistivity of ${\sim}10^{-3}{\Omega}\;cm$ and the mobility of ${\sim}6cm/V\;s$. Organic Light-emitting diodes (OLEDs) with IZO/N,N'-diphenyl-N, N'-bis(3-methylphenl)-1, 1'-biphenyl-4,4'-diamine (TPD)/tris (8-hydroxyquinoline) aluminum ($Alq_3$)/LiF/Al configuration were fabricated. LiF layer inserted is used as an interfacial layer to increase the electron injection. Under a current density of $100\;mA/cm^2$, the OLEDs show an excellent efficiency (9.4 V turn-on voltage) and a good brightness ($12000\;cd/m^2$) of the emission light from the devices. These results indicate that IZO films hold promise for anode electrodes in the OLEDs application.

Ag thickness effect on electrical and optical properties of flexible IZTO/Ag/IZTO multilayer anode grown on PET

  • Nam, Ho-Jun;Cho, Sung-Woo;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.379-379
    • /
    • 2007
  • The characteristics of indium-zinc-tin-oxide (IZTO)-Ag-IZTO multilayer grown on a PET substrate were investigated for flexible organic light-emitting diodes. The IZTO-Ag-IZTO (IAI) multilayer anode exhibited a remarkably reduced sheet resistance of 4 ohm/sq and a high transmittance of 84%, despite the very thin thickness of the IZTO (30 nm) layer. In addition, it was shown that electrical and optical properties of IAI anodes are critically dependent on the thickness of the Ag layer, due to the transition of Ag atoms from distinct islands to continuous films at a critical thickness (14 nm). Moreover, the IAI/PET sample showed more stable mechanical properties than an amorphous ITO/PET sample during the bending test due to the existence of a ductile Ag layer. The current density voltage-luminance characteristics of flexible OLEDs fabricated on an IAI/PET substrate was better than those of flexible OLEDs fabricated on an ITO/PET substrate. This indicates that IAI multilayer anodes are promising flexible and transparent electrodes for flexible OLEDs.

  • PDF

Rapid thermal annealing effect of IZO transparent conducting oxide films grown by a box cathode sputtering (박스캐소드 스퍼터로 성장시킨 IZO 투명 전도막의 급속 열처리 효과)

  • Bae, Jung-Hyeok;Moon, Jong-Min;Jeong, Soon-Wook;Kim, Han-Ki;Yi, Min-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.473-474
    • /
    • 2006
  • We report on the rapid thermal annealing effect on the electrical, optical, and structural properties of IZO transparent conducting oxide films grown by box cathode sputtering (BCS). To investigate structural properties of rapid thermal annealed IZO films in $N_2$ atmosphere as a function of annealing temperature, syncrotron x-ray scattering experiment was carried out. It was shown that the amorphous structure of the IZO films was maintained until $400^{\circ}C$ because ZnO and $In_2O_3$ are immiscible and must undergo phase separation to allow crystallization. In addition, the IZO films grown at different Ar/$O_2$ ratio of 30/1.5 and 30/0 showed different preferred (222) and (440) orientation, respectively, with increase of rapid thermal annealing temperature. The electrical properties of the OLED with rapid thermal annealed IZO anode was degraded as rapid thermal annealing temperature of IZO increased. This indicates the amorphous IZO anode is more beneficial to make high-quality OLEDs.

  • PDF

Characterization for Performance of Zn-Air Recharegeable Batteries on Different Composition in Acidic Electrolyte (산성용액에서 전해액 조성에 따른 아연공기 이차전지의 성능변화)

  • DAI, GUANXIA;LU, LIXIN;SHIM, JOONGPYO;LEE, HONG-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.401-409
    • /
    • 2021
  • The combination of different concentrations of ZnSO4 in acidic solution as electrolyte in Zn-air batteries was investigated by Zn symmetrical cell test, half-cell and full cell tests. Using 1 M ZnSO4 + 0.05 M H2SO4 as electrolyte and MnO2 as air cathode catalyst with Zn foil anode, this combination had a satisfactory performance with balance of electrochemical activity and stability. Its electrochemical activity was matched to or even better than the PtRu catalyst in different current density. And its cycle life was improved (more than 100 cycles stable) by suppressing the growth of zinc dendrites on anode obviously. This electrolyte overcame the shortcomings of alkaline electrolyte that are easy to react with CO2 in the air, severely growth of Zn dendrites caused by uneven plating/stripping of Zn.

High-Performance Flexible Organic Light-Emitting Devices using Amorphous Indium Zinc Oxide Anode

  • Kang, Jae-Wook;Jeong, Won-Ik;Kim, Han-Ki;Kim, Do-Geun;Lee, Gun-Hwan;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1425-1428
    • /
    • 2007
  • The amorphous IZO on flexible substrate (PC) shows similar electrical conductivity and optical transmittance with commercial ITO glass even though it was prepared at $<50\;^{\circ}C$. Moreover, it exhibits little resistance change during 5000 bending cycles, demonstrating good mechanical robustness. A green phosphorescent OLED fabricated on amorphous IZO on flexible PC shows maximum external quantum efficiency of ${\eta}_{ext}=13.7\;%$ and power efficiency of ${\eta}_p=32.7\;lm/W$, which are higher than a device fabricated on a commercial ITO on glass (${\eta}_{ext}=12.4%$ and ${\eta}_p=30.1\;lm/W$) and ITO on flexible PC (${\eta}_{ext}=8.5%$ and ${\eta}_p=14.1\;lm/W$).

  • PDF

Development of chemical conversion coating technology by environment friendly method for Zn electroplated steel (아연 전기 도금 강의 환경친화적인 화성처리 기술 개발)

  • Kim, Seong-Jong;Kim, Jeong-Il;Jang, Seok-Ki
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.271-272
    • /
    • 2006
  • Zinc confers high corrosion resistance by acting as a sacrificial anode, and a zinc coating improves the appearance of steel. Chromate conversion coating (CCC) films are still one of the most efficient surface treatments for steel. Although such films can self-repair via the dissolution of Cr(VI), dissolved Cr(VI) have adverse effects on humans, and the environment. Therefore, we examined the corrosion protection property and morphology of colloidal silica conversion films as an alternative to CCC films. The corrosion behavior was investigated in 3% NaCl solution using electrochemical techniques, including electrochemical impedance spectroscopy, open circuit potential, and the salt spray test(SST). Corrosion was implied by the appearance of red rust on the specimen surface. In corrosion resistance at 3% NaCl solution, red rust appeared at 15-20, 55-70, and 83-98 days on Zn-electroplated steel, colloidal silica conversion-coated specimens, and CCC-coated specimens, respectively. In the salt spray test, the colloidal silica film provided better corrosion protection than CCC films, i.e., red rust appeared at 96 hours on the Zn-electroplated steel sheet, at 432 hours with the CCC films, and at 888 hours with silica conversion coating.

  • PDF

Numerical Analysis of the Prediction of Zincate Concentration at a Zinc Electrode with Electrolyte Flow Conditions in a Zinc Air Fuel Cell (전해질 유동 조건에 따른 아연공기전지 아연극 표면의 Zincate 이온 농도 예측을 위한 수치해석적 연구)

  • Kim, Jung-Yun;Lee, Ho-Il;Oh, Tae-Young;Park, Sang-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.231-238
    • /
    • 2011
  • In this work, the numerical analysis for the zincate behavior at a zinc electrode with an electrolyte flow was carried out for a ZAFC. The Nernst-Planck equation with a boundary condition of Butler-Volmer type was adopted to describe electrochemical effects of mass transfer, migration, kinetics of electrode. The Navier-Stokes equation, coupling to the Nernst-Planck equation, is also applied to describe the internal electrolyte flow fields. The validity of the numerical model is proved through the comparative analysis between numerical and experimental results. The concentration of zincate and the current density were also investigated at a zinc anode according to various electrolyte velocities. We have found the concentration of zincate decreased and the current density increased with an increase in the electrolyte velocity.

A Study on the ZnO Supported Silica Gel (ZnO가 담지된 실리카 겔 연구)

  • Kim, S.Y.;Kim, M.Y.;Ju, C.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.75-78
    • /
    • 2011
  • There are various types of materials used in electronic industry, such as electrode material, conductor, insulator, anode, cathode and semiconductor. Electrode material type is Cu, Ti, ZnO and so on. Especially if we use mixed ZnO in soil cement or silica gel, we can have advantages in ice road to prevent freezing. We have great impact if we use supported in inorganic substances like silica gel. In this paper we have studied that ZnO supported silica gel and its properties. Zinc acetate dissolved in distilled water were loaded on the silica gel by the reaction with ammonia at $80^{\circ}C$. And we investigated particle structures of ZnO by scanning electron microscopy(SEM) and X-ray diffraction(XRD).

Highly flexible, transparent and low resistance IZO-Ag-IZO multilayer electrode for flexible OLEDs

  • Cho, Sung-Woo;Choi, Kwang-Hyuk;Jeong, Jin-A;Lee, Se-Hyung;Kim, Jang-Joo;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.609-612
    • /
    • 2008
  • Characteristics of indium-zinc-oxide (IZO)-Ag-IZO multilayer grown on a PET substrate were investigated for flexible organic emitting diodes. By inserting very thin Ag layer between amorphous IZO, IZO-Ag-IZO (IAI) multilayer anode exhibited remarkably reduced sheet resistance and high transmittance due to the surface plasmon resonance effect and Ag layer.

  • PDF

The Electrical Properties of Cementitious Composites with Carbon Black and MWCNT for the Development of Cement-Based Battery (시멘트기반 배터리 개발을 위한 Carbon Black 및 MWCNT 혼입 시멘트 복합체의 전기적 특성 분석)

  • Lee, Joo-Ha
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.212-213
    • /
    • 2018
  • The cementitious composites have been developed to satisfy various demands of the construction market. The conductive concrete, which is a carbon-based cementitious composite, was used for the deicing or the detecting the internal crack. The cement-based battery is a technology that applies the basic concept of the alkaline battery to these conductive concretes. The cementitious composites could have a function as batteries, through a mixing of anode and cathode, which were consist of the zinc and manganese dioxide powder. The carbon-based materials, which have a significant effect on electrical properties, could be considered as the main variable in cement-based batteries. Therefore, in this study, the effects of carbon-based materials were investigated. Two types of materials, including the Carbon black and Multi-walled carbon nanotube(MWCNT), were considered as the main variables. From the experiment results, the electrical characteristics such as resistance, voltage, and current were compared according to the age.

  • PDF