• 제목/요약/키워드: Zigzag model

검색결과 87건 처리시간 0.023초

Theoretical Study of Thiazole Adsorption on the (6,0) zigzag Single-Walled Boron Nitride Nanotube

  • Moradi, Ali Varasteh;Peyghan, Ali Ahmadi;Hashemian, Saeede;Baei, Mohammad T.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3285-3292
    • /
    • 2012
  • The interaction of thiazole drug with (6,0) zigzag single-walled boron nitride nanotube of finite length in gas and solvent phases was studied by means of density functional theory (DFT) calculations. In both phases, the binding energy is negative and presenting characterizes an exothermic process. Also, the binding energy in solvent phase is more than that the gas phase. Binding energy corresponding to adsorption of thiazole on the BNNT model in the gas and solvent phases was calculated to be -0.34 and -0.56 eV, and about 0.04 and 0.06 electrons is transferred from the thiazole to the nanotube in the phases. The significantly changes in binding energies and energy gap values by the thiazole adsorption, shows the high sensitivity of the electronic properties of BNNT towards the adsorption of the thiazole molecule. Frontier molecular orbital theory (FMO) and structural analyses show that the low energy level of LUMO, electron density, and length of the surrounding bonds of adsorbing atoms help to the thiazole adsorption on the nanotube. Decrease in global hardness, energy gap and ionization potential is due to the adsorption of the thiazole, and consequently, in the both phases, stability of the thiazole-attached (6,0) BNNT model is decreased and its reactivity increased. Presence of polar solvent increases the electron donor of the thiazole and the electrophilicity of the complex. This study may provide new insight to the development of functionalized boron nitride nanotubes as drug delivery systems for virtual applications.

Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis

  • Hussain, Muzamal;Naeem, Muhammad N.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제8권3호
    • /
    • pp.229-244
    • /
    • 2020
  • In this paper, modified Kelvin's model has been used to analyze the orthotropic vibration frequencies of single walled carbon nanotubes with clamped-clamped and clamped-free boundary conditions. For this system the governing equation is developed with wave propagation approach. Armchair, zigzag and chiral structures are considered for the vibrational analysis to investigate the effect of different modes, in-plane rigidity and mass density per unit lateral area. Throughout the computations, on decreasing the length-to-diameter ratios, the frequencies of said structure increases. In addition, by increasing three different value of in-plane rigidity resulting frequencies also increase and frequencies decrease on increasing mass density per unit lateral area. The results generated using computer software MATLAB to furnish the evidence regarding applicability of present model and also verified by available published literature.

Effect of dimensionless nonlocal parameter: Vibration of double-walled CNTs

  • Hussain, Muzamal;Asghar, Sehar;Khadimallah, Mohamed Amine;Ayed, Hamdi;Alghamdi, Sami;Bhutto, Javed Khan;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제30권4호
    • /
    • pp.269-276
    • /
    • 2022
  • In this paper, frequency vibrations of double-walled carbon nanotubes (CNTs) has been investigated based upon nonlocal elastic theory. The inference of small scale is being perceived by establishing nonlocal Love shell model. The wave propagation approach has been operated to frame the governing equations as eigen value system. An innovational nonlocal model to examine the scale effect on vibrational behavior of armchair, zigzag and chiral of double-walled CNTs. An appropriate selection of material properties and nonlocal parameter has been considered. The influence of dimensionless nonlocal parameter has been studied in detail. The dominance of end condition via nonlocal parameter is explained graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

대학 강의실 수업의 효과성 향상을 위한 H형 블렌디드 이러닝 적용 효과 분석 (Investigation of H model blended e-learning technique in enhanced effectiveness of class learning)

  • 최병수;유상미
    • 컴퓨터교육학회논문지
    • /
    • 제16권3호
    • /
    • pp.49-60
    • /
    • 2013
  • 본 연구는 블렌디드 이러닝이 대학의 강의실 위주의 수업에서 효과성을 향상시킬 수 있는지를 검증하고자 하였다. 먼저, 수업 사례를 분석하여 블렌디드 이러닝 운영방식으로 CbE(Class based E-learning)와 EbC(E-learning based Class) 방식을 도출하고, 수업구조로 Z형(Zigzag model)과 H형(Ladder model)을 정의하였다. 연구의 목적을 달성하기 위하여 A대학의 "엑셀실무" 과목에 CbE 방식의 H형 블렌디드 이러닝을 운영하였다. 집단은 사이버강의 학습참여비율의 50%이상인 집단(그룹 1)과 그렇지 않은 집단(그룹 2)으로 나누고, 자료의 분석은 $x^2$-검정, t -검정으로 학업 성취도를 비교하였다. 사이버강의 학습참여비율과 합격여부의 관계를 규명하기 위해 로지스틱 회귀분석을 실시하였다. 검정 결과, 그룹 1이 학업 성취도에서 통계적으로 유의하게 높게 나타났다. 로지스틱 회귀분석 결과에서 사이버강의 학습참여비율은 합격여부를 예측하는 유의미한 변인으로 규명됨에 따라, 블렌디드 이러닝의 효과성이 확증되었다. 연구 결과, H형 블렌디드 이러닝은 강의실 수업의 단점을 보완하여 학업 성취도와 학습 만족도를 향상시키고, 학습자가 블렌디드 이러닝 수업 방식에 대해 긍정적인 인식을 갖도록 한 것으로 나타났다. 끝으로 성공적으로 블렌디드 이러닝을 운영하기 위한 전략과 대학에서의 활성화 방안에 대해 제언하였다.

  • PDF

Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model

  • Dihaj, Ahmed;Zidour, Mohamed;Meradjah, Mustapha;Rakrak, Kaddour;Heireche, Houari;Chemi, Awda
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.335-342
    • /
    • 2018
  • The transverse free vibration of chiral double-walled carbon nanotube (DWCNTs) embedded in elastic medium is modeled by the non-local elasticity theory and Euler Bernoulli beam model. The governing equations are derived and the solutions of frequency are obtained. According to this study, the vibrational mode number, the small-scale coefficient, the Winkler parameter and chirality of double-walled carbon nanotube on the frequency ratio (xN) of the (DWCNTs) are studied and discussed. The new features of the vibration behavior of (DWCNTs) embedded in an elastic medium and the present solutions can be used for the static and dynamic analyses of double-walled carbon nanotubes.

Prediction of vibration response of functionally graded sandwich plates by zig-zag theory

  • Simmi, Gupta;H.D., Chalak
    • Advances in aircraft and spacecraft science
    • /
    • 제9권6호
    • /
    • pp.507-523
    • /
    • 2022
  • This study is aimed to accurately predict the vibration response of two types of functionally graded sandwich plates, one with FGM core and another with FGM face sheets. The gradation in FGM layer is quantified by exponential method. An efficient zig-zag theory is used and the zigzag impacts are established via a linear unit Heaviside step function. The present theory fulfills interlaminar transverse stress continuity at the interface and zero condition at the top and bottom surfaces of the plate for transverse shear stresses. Nine-noded C-0 FE having 8DOF/node is utilized throughout analysis. The present model is free from the obligation of any penalty function or post-processing technique and hence is computationally efficient. Numerical results have been presented on the free vibration behavior of sandwich FGM for different end conditions, lamination schemes and layer orientations. The applicability of present model is confirmed by comparing with published results. Several new results are also specified, which will serve as the benchmark for future studies.

지역특성을 고려한 농촌 초등학교건축 모형개발을 위한 기초연구 - 포천군 소재 초등학교 시설현황과 특성분석을 중심으로 - (A study on the model of rural elementary school facilities based on the regional characteristics)

  • 김승배
    • 교육시설
    • /
    • 제10권3호
    • /
    • pp.5-13
    • /
    • 2003
  • This paper is a series of study for the development of rural elementary school facilities model applying to the regional characteristics. Therefore, main theme of this paper is to pile up and analysis of elementary school facilities data in Po Cheon through a series of actual survey and interview with teachers. The results are summarized as follows ; First of all, in case of Po Cheon, it needs to study for urban model type as well as rural elementary school facilities model type. Second, extension type of buildings has separated as three types-zigzag extension type, vertical & horizontal extension type, separate building type. But another characteristics, such as type of site plan, type of corridor and module of classroom unit, outdoor space and elevation design, are monotonous. Third. the results of this analysis show that it is desirable to locate houses for teachers within boundaries. Finally, the future paper needs to be studying more various module of classroom unit, extension type, space program, type of floor plan and site plan.

A simplified directly determination of natural frequencies of CNT: Via aspect ratio

  • Banoqitah, Essam Mohammed;Hussain, Muzamal;Khadimallah, Mohamed A.;Ghandourah, Emad;Yahya, Ahmad;Basha, Muhammad;Alshoaibi, Adil
    • Advances in nano research
    • /
    • 제13권3호
    • /
    • pp.207-216
    • /
    • 2022
  • In this paper, a novel model is developed for frequency behavior of single walled carbon nanotubes. The governing equation of motion is constructed method based on the Sander theory using Rayleigh-Ritz's method The frequencies enhances on increasing the power law index using simply supported, clamped and clamped free end conditions. The frequency curve for C-F is less than other conditions. It is due to the physical constraints which are applied on the edge of the CNT. It is observed that the C-F boundary condition have less frequencies from the other two conditions. The frequency phenomena for zigzag are insignificant throughout the aspect ratio. Moreover when index of power law is increased then frequencies increases for all boundary conditions. The natural frequency mechanism for the armchair (10, 10) for various values of power law index with different boundary conditions is investigated. Here frequencies decrease on increases the aspect ratio for all boundary conditions. The frequency curves of SS-SS edge condition is composed between the C-C and C-F conditions. The curves of frequency are less significant from small aspect ratio (L/d = 4.86 ~ 8.47) and decreases fast for greater ratios. It is found that the frequencies via aspect ratios, armchair (10, 10) have higher values from zigzag (10, 0). It is due to the material structure which is made by the carbon nanotubes. The power law index have momentous effect on the vibration of single walled carbon nanotubes. The present frequency result is also compared numerically experimentally with Raman Spectroscopy.

Electronic properties of graphene nanoribbons with Stone-Wales defects using the tight-binding method

  • M.W. Chuan;S.Z. Lok;A. Hamzah;N.E. Alias;S. Mohamed Sultan;C.S. Lim;M.L.P Tan
    • Advances in nano research
    • /
    • 제14권1호
    • /
    • pp.1-15
    • /
    • 2023
  • Driven by the scaling down of transistor node technology, graphene became of interest to many researchers following the success of its fabrication as graphene nanoribbons (GNRs). However, during the fabrication of GNRs, it is not uncommon to have defects within the GNR structures. Scaling down node technology also changes the modelling approach from the classical Boltzmann transport equation to the quantum transport theory because the quantum confinement effects become significant at sub-10 nanometer dimensions. The aim of this study is to examine the effect of Stone-Wales defects on the electronic properties of GNRs using a tight-binding model, based on Non-Equilibrium Green's Function (NEGF) via numeric computation methods using MATLAB. Armchair and zigzag edge defects are also implemented in the GNR structures to mimic the practical fabrication process. Electronic properties of pristine and defected GNRs of various lengths and widths were computed, including their band structure and density of states (DOS). The results show that Stone-Wales defects cause fluctuation in the band structure and increase the bandgap values for both armchair GNRs (AGNRs) and zigzag GNRs (ZGNRs) at every simulated width. In addition, Stone-Wales defects reduce the numerical computation DOS for both AGNRs and ZGNRs. However, when the lengths of the structures increase with fixed widths, the effect of the Stone-Wales defects become less significant.

Free vibration analysis of stiffened laminated plates using layered finite element method

  • Guo, Meiwen;Harik, Issam E.;Ren, Wei-Xin
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.245-262
    • /
    • 2002
  • The free vibration analysis of stiffened laminated composite plates has been performed using the layered (zigzag) finite element method based on the first order shear deformation theory. The layers of the laminated plate is modeled using nine-node isoparametric degenerated flat shell element. The stiffeners are modeled as three-node isoparametric beam elements based on Timoshenko beam theory. Bilinear in-plane displacement constraints are used to maintain the inter-layer continuity. A special lumping technique is used in deriving the lumped mass matrices. The natural frequencies are extracted using the subspace iteration method. Numerical results are presented for unstiffened laminated plates, stiffened isotropic plates, stiffened symmetric angle-ply laminates, stiffened skew-symmetric angle-ply laminates and stiffened skew-symmetric cross-ply laminates. The effects of fiber orientations (ply angles), number of layers, stiffener depths and degrees of orthotropy are examined.