• 제목/요약/키워드: Ziegler-Nichols algorithm

검색결과 37건 처리시간 0.031초

디젤기관의 on-line 파라미터 추정에 의한 적응 속도제어 (An Adaptive Speed Control of a Diesel Engine by Means of the On-line Parameter Estimate)

  • 유희한;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.20-26
    • /
    • 1996
  • Recently, for the speed control of a diesel engine, some methods using the modern control theory such as LQ control technique, or $\textit{H}_{\infty}$control theory etc., have been reported. However, most of speed controlers of a diesel engine ever developed are still using the PID control algorithm. And, as another approach to the speed control of a diesel engine, the authors proposed already a new method to adjust the parameters of the PID controller by a model matching method. In the previous paper, the authors confirmed that the proposed new method is superior to Ziegler & Nichols's method through the analysis of results of the digital simulations under the assumption that the parameters of a diesel engine are known exactly. But, actually, it is very difficult to find out the value of parameters of a diesel engine accurately. And the parameters of a diesel engine are changigng according to the operating condition of a diesel engine. So, in this paper, a method to estimate the parameters of the PID controller for the speed control of a diesel engine by means of the model matching method are proposed. Also, the digital simulations are carried out in cases either with or without measurement noise. And this paper confirms that the proposed method here is superior to Ziegler & Nichols's method through the analysis of the characteristics of indicial responses.

  • PDF

자동차 무인화를 위한 제어알고리즘 개발 (Development of Control Algorithm for Auto-Vehicle)

  • 배종일;황종덕
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1931-1932
    • /
    • 2008
  • To demonstration the efficiency of fuzzy logic controller, we carried out simulation with a automobile's transfer function. First, we designed the PID controller by using Ziegler-Nichols tunning method. Second, we calculated time response for each controller, then we compared the speed patterns of fuzzy controlled system and PID controlled system. Also we compared the difference of input variable. By comparing two controller's response, we can confirm the merit of fuzzy controller about comfortability. Fuzzy controller can reduce input changing frequency.

  • PDF

퍼지 간접추론법과 수정형 지글러-니콜스법에 의한 비례-적분-미분 제어기의 점진적 동조 (Iterative Tuning of PID Controller by Fuzzy Indirect Reasoning and a Modified Zigler-Nichols Method)

  • Kim, S.D.
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.74-83
    • /
    • 1996
  • An iterative tuning technique is derived for PID controllers which are widely used in industries. The tuning algorithm is based upon a fuzzy indirect reasoning method and an iterative technique. The PID gains for the first tuning action are determined by a method which is modified from the Ziegler-Nichols step response method. The first PID gains are determined to obtain a control performance so close to a design performance that the following tuning process can be made effectively. The design paramaters are given as time-domain variables which human is familiar with. The results of simulation studies show that the proposed tuning method can produce an effective tuning for arbitrary design performances.

  • PDF

가변부하시 전문가 PLC에 의한 유도전동기의 속도제어 (Speed Control of Induction Motor by Means of Expert PLC in Variable load)

  • 박왈서;오훈
    • 조명전기설비학회논문지
    • /
    • 제16권2호
    • /
    • pp.54-58
    • /
    • 2002
  • PID제어기는 산업자동화 설비에 널리 쓰이고 있다. 하지만 시스템 특성이 변화하면, 정밀제어를 위한 매개변수 결정과 동조가 쉽지 않다. 이를 해결하기 위한 방법으로 본 논문에서는 PLC를 사용한 전문가 자동동조 PID 제어기를 제안하였다. 전문가 자동동조 알고리즘은 Ziegler-Nichols의 계단응답법과 전문가 지식을 기초로 하였다. 제어의성능 실험은 가변부하시 유도모터 속도제어의 수행에 의하여 확인하였다.

2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계 (Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

전력계통의 부하주파수 제어를 위한 유전 알고리즘을 사용한 최적 PID 제어기 설계 (Design of Optimal pm Controller Using Genetic Algorithm for Load Frequency Control of Power System)

  • 이정필;왕용필;김상효;허동렬;정형환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.257-260
    • /
    • 1997
  • This paper designs the optimal PID controller for load frequency control on 2-area power system. Genetic algorithm is utilized to optimize parameters of PID controller which is applied to power system. Using two-point crossover, uniform crossover and one-point crossover, Search performance of genetic algorithm with each crossover method is considered. In case of load variation in 1-area, the dynamic characteristic of power system is considered. The simulation results show that the proposed PID controller is better control performance than PID controller using Ziegler-Nichols method.

  • PDF

비례유량제어밸브 위치제어기 자동조정 (Auto Tuning of Position Controller for Proportional Flow Control Solenoid Valve)

  • 정규홍
    • 대한기계학회논문집A
    • /
    • 제36권7호
    • /
    • pp.797-803
    • /
    • 2012
  • 비례솔레노이드밸브는 코일전류에 비례하는 전자기력을 이용하여 밸브 변위를 연속적으로 가변시키는 밸브이다. 대용량 비례유량제어밸브는 발전소나 화학 플랜트에서 물, 스팀, 가스 등과 같은 공정유체의 대용량 유량제어에 사용되며 공압이나 모터를 이용하는 밸브에 비하여 우수한 응답성능과 소형화의 장점을 가진다. 본 연구에서는 비례제어밸브를 대상으로 밸브의 동적 특성을 식별한 후 목표 성능이 만족되도록 위치제어기의 비례적분이득을 자동으로 조정하는 기능을 설계하였다. 동특성 식별은 릴레이 피드백을 통하여 한계 안정 상태에서의 임계이득과 임계주기로 파악하였으며, 비례적분이득 결정에는 Ziegler-Nichols 방법을 적용하였다. 구현된 기능은 시험을 통하여 성능을 검증하였으며 밸브 작동점과 릴레이 제어기 변수가 자동조정에 미치는 영향을 분석하였다.

PID 온도 제어 및 적외선 센서를 이용한 이산화탄소 측정 시스템 설계에 관한 연구 (A study on the design of Carbon Dioxide Measurement System using Infrared sensor and PID temperature control)

  • 임형택;백승화;주관식
    • 센서학회지
    • /
    • 제8권3호
    • /
    • pp.259-264
    • /
    • 1999
  • The $CO_2$ measuring system using infrared sensor has the variance according to the temperature change. Therefore, the temperature compensation should be needed to obtain a reliable measurement. In this study, the sensor module consist of infrared $CO_2$ Sensor, IR Source, pipe and the heater and measuring system has amplifier, A/D converter and microprocessor. And we suggest a method to reduce the error by using the PID temperature control. We use optimum parameters setting of Ziegler & Nichols as well as PID temperature control algorithm for the temperature compensation. In this method, PID optimum parameter is set from dummy time(L) and maximum slope(R). As a result of using this PID temperature control, it is founded that it has the fast response and low steady state error. Therefore, it is certainly proved that this is very suitable algorithm to correct the error on measurement.

  • PDF

실시간 퍼지 동조 PID 제어 알고리즘 (Real-time Fuzzy Tuned PID Control Algorithm)

  • 최정내;오성권;황형수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.423-426
    • /
    • 2005
  • In this paper, we proposed a PID tuning algorithm by the fuzzy set theory to improve the performance of the PID controller. The new tuning algorithm for the PID controller has the initial value of parameter Kp, $\tau_{I}$, $\tau_{D}$. by the Ziegler-Nichols formula that uses the ultimate gain and ultimate period from a relay tuning experiment. We will get the error and the error rate of plant output corresponding to the initial value of parameter and fnd the new proportion gain(Kp) and the integral time ($\tau_{I}$) from fuzzy tuner by the error and error rate of plant oueut as a membership function of fuzzy theory. This fuzzy auto tuning algorithm for PID controller considerably reduced the overshoot and rise time as compared to any other PID controller tuning algorithms. And in real parametric uncertainty systems, it constitutes an appreciable improvement of performance. The significant property of this algorithm is shown by simulation

  • PDF

Autotuning fuzzy PID controller for position control of DC servo motor

  • Park, Jong-Kun;Lim, Young-Cheol;Cho, Kyeng-Young;Ryoo, Young-Jae;Oh, Dong-Hwan;Wi, Seog-O;Lee, Hong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.257-262
    • /
    • 1994
  • This paper describes an autotuning fuzzy PID controller for a position control of DC serve motor. Because ZNM(Ziegler-Nichols Method) with relay feedback has the difficulty in re-tuning the PID parameters and adaptive method has complex algorithm, a new method to overcome those problems is required. The proposed scheme determines the initial PID gains by using ZNM with relay feedback, and then re-tunes the optimal PID parameters by using fuzzy expert system whenever control conditions are changed. To show the validity of the proposed method, a position control of DC servo motor is illustrated by computer simulation and is experimented by a designed controller.

  • PDF