• Title/Summary/Keyword: Ziegler Nichols Methods

Search Result 28, Processing Time 0.021 seconds

An Automatic tuning of PlD Controls by Refined Ziegler-Nichols Methods (수정된 Ziegler-Nichols 방법에 의한 PID제어의 자동 동조)

  • Koo, J.H.;Yang, W.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.337-339
    • /
    • 1992
  • This paper deals with the tuning method of PID controls for process controls. It introduces the normalized process gain and the normalized process dead-time for processes based on Ziegler-Nichols tuning methods. In the case of PID auto-tuning, the first, this method applies Ziegler-Nichols tuning method and introduces the set-point weighting for reducing overshoot in the large normalized process gain or small normalized process dead-time, the second, this method is modified and includes the set-point weighting in the small normalized process gain or large normalized process dead-time. In the case of PI auto-tuning, this method is modified for reducing overshoot. This paper obtains empirical data with Ziegler-Nichols methods for refined Ziegler-Nichols tuning methods.

  • PDF

An Analytic Study on the Relations between the Ziegler-Nichols Tuning Methods for Controllers (지글러-니콜스 제어파라미터 조정법 (1), (2)의 연관성에 대한 해석적 연구)

  • 강인철;최순만;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.219-225
    • /
    • 2002
  • Parameter tuning methods by Ziegler-Nichols for PID controllers are generally classified into Z-N(1) and Z-N(2). The purpose of this paper is to describe what relations exist between the methods of Z-N(1) and Z-N(2), or how Z-N(1) can be originated from Z-N(2) by analyzing one loop control system composing of P or PI controller and time delay process. In this paper, for the first step to seek mutual relations, the simple formulas of Z-N(2) are transformed into those composing of the same parameters as Z-N(1) which is derived from the analysis of frequency characteristics. Then, the approximation of the actual ultimate frequency is proposed as important premise in the translation between Z-N(1) and (2). Such equalization and approximation brings a simple approximated formula which can explain how Z-N(1) is originated from the Z-N(2) in the form of formula.

Dynamic Simulation using the Driver Model to Evaluate the Handling Performances (운전자 모델을 이용한 조종안정성능 평가 시뮬레이션)

  • 손희성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.1-8
    • /
    • 1997
  • The purpose of this study is to suggest the methods to model driver input and evaluate the handling performances of a vehicle by dynamic simulation using ADAMS (Automated Dynamic Analysis of Mechanical Systems) software. The driver input was modeled using the PID controller to follow the desired velocities and paths. The gains of the controller were decided by the trial and error methods aided by Ziegler-Nichols rule. It was successful to apply the rule for the vehicle model to follow the desired values of steady state cornering and lane change maneuver. As the results, handling performances of baseline and two variegated vehicles were evaluated. The theoretical provement was performed to explain the differences.

  • PDF

The Improvement of Position Precision for Hybrid Linear Pulse Motor

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong;Kim, Cherl-Jin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.28-33
    • /
    • 2001
  • The subject of this study is to improve the position performance of the linear motion for hybrid type Linear Pulse Motor (HLPM). Generally, there are two applicable methods to ensure precise position control ; a good processing method. This paper is suggested an electrical 125 microstep driving method so as to achieves the excellent control performance, besides the small mechanical manufacture of teeth pitch. The compensation method of digital PI control is apply to step response of stable position control, step error, vibration suppression and the approach to high stability, and the Ziegler-Nichols tuning method is applied to the proper design of control parameter. The proposed control method has been verified by simulation results of the suitable gain and phase margin of bode plot, and from experiment result of step response.

A Comparative Study of Controllers for CSI Fed Induction Motor

  • Kumar, Piush;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.165-170
    • /
    • 2010
  • This paper presents a comparative study of P and PI controllers for a current source inverter (CSI) fed induction motor drive system. A dq model has been used which incorporates the induction motor and the inverter power supply with current feedback. The model is used first to generate the steady state curves to determine the operating point through computer simulations using the software package MATLAB. Then a transient analysis has been carried out for different values of the speed and current controller parameters. The controller value is adjusted by the Ziegler-Nichols method. It has been observed that the transient time to reach the steady state value is larger with the PI controller than with the P controller.

An Analytic Study On the Mutual Relation between Method(1) and (2) of ZIEGLER-NICHOLS Control Parameter Tuning (지글러-니콜스 제어파라미터 조정법(1),(2)의 상호 연관성에 대한 해석적 연구)

  • 강인철;최순만;최재성
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.112-119
    • /
    • 2001
  • Parameter tuning methods by Ziegler-Nickels for control systems are generally classified into Z-N(1) and Z-N(2). The purpose of this paper is to describe what relations exist between methods of Z-N(1) and Z-N(2), or how Z-N(1) method can be originated from Z-N(2) method by analyzing one loop control system of P or PI controller and time delay process. The formulas of Z-N(1) consist of process parameters, L(time delay), $K_m$(gain) and $T_m$(time constant), but Z-N(2) method is based only on the ultimate gain $K_u$ and the ultimate period $T_u$ acquired normally by practical trial without any parameters of Z-N(1). In this paper, for the first step to seek mutual relations, the simple formulas of Z-N(2) are transformed into the formulas composed of the same parameters as Z-N(1) which is derived from the analysis of frequency characteristics. Then, the approximation of the actual ultimate frequency is proposed as important premise in the translation between Z-N(1) and (2). Such equalization and approximation brings a simple approximated formula which can explain how Z-N(1) is originated from the Z-N(2) in the form of formula. And a model system is adopted to compare the approximated formula to Z-N(1) and Z-N(2) methods, the results of which show the effectiveness of the proposals.

  • PDF

PID controller tuning of DC motor for speed control (직류모터의 속도 제어를 위한 PID 제어기 동조)

  • So Myung-Ok;Lee Yun-Hyung;Ahn Jong-Kap;Choi Woo-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.111-116
    • /
    • 2004
  • In this paper, parameters of a given DC motor system are estimated using the model adjustment technique and the real coded genetic algorithm(RCGA) technique. A number of tuning methods, based on experience and experiment, such as Ziegler-Nichols, Cohen-Coon, IMC, L-ITAE Method have been proposed to obtain parameters for the PID controller. This paper proposes estimating parameters of PID controller using RCGA. The performance of the proposed algorithm is demonstrated through simulations and experiences.

  • PDF

PSO based tuning of PID controller for coupled tank system

  • Lee, Yun-Hyung;Ryu, Ki-Tak;Hur, Jae-Jung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1297-1302
    • /
    • 2014
  • This paper presents modern optimization methods for determining the optimal parameters of proportional-integral-derivative (PID) controller for coupled tank systems. The main objective is to obtain a fast and stable control system for coupled tank systems by tuning of the PID controller using the Particle Swarm Optimization algorithm. The result is compared in terms of system transient characteristics in time domain. The obtained results using the Particle Swarm Optimization algorithm are also compared to conventional PID tuning method like the Ziegler-Nichols tuning method, the Cohen-Coon method and IMC (Internal Model Control). The simulation results have been simulated by MATLAB and show that tuning the PID controller using the Particle Swarm Optimization (PSO) algorithm provides a fast and stable control system with low overshoot, fast rise time and settling time.

Automatic Tension Control of a Timber Carriage Used for Biomass Collection

  • Choi, Yun-Sung;Oh, Jae-Huen;Euh, Seung-Hee;Oh, Kwang-Cheor;Choi, Hee-Jin;Kim, Dae-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.106-112
    • /
    • 2012
  • Purpose: A lab-scale timber carriage using a servo motor system was built. When two motors move a carriage, wire tension is changed according to the different line speeds caused by a wire drum's changing diameter, leading to inappropriate traveling characteristics of the carriage. In order to overcome this problem, PID Control was used to control the motor speed. Methods: Ziegler-Nichols method was used to determine PID gains. Results: The initial PID gains were 1.8, 0.025, and 0.006, respectively, and optimal gains of 1.4 and 0.010 for P and I gain were obtained experimentally. Conclusions: The results showed that constant wire tension could be maintained by controlling the speed of the motor using PI control. Overshoot occurred at initial motor operation due to vibration and elasticity of the wire itself.

An Adaptive Speed Control of a Diesel Engine by Means of the On-line Parameter Estimate (디젤기관의 on-line 파라미터 추정에 의한 적응 속도제어)

  • 유희한;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.20-26
    • /
    • 1996
  • Recently, for the speed control of a diesel engine, some methods using the modern control theory such as LQ control technique, or $\textit{H}_{\infty}$control theory etc., have been reported. However, most of speed controlers of a diesel engine ever developed are still using the PID control algorithm. And, as another approach to the speed control of a diesel engine, the authors proposed already a new method to adjust the parameters of the PID controller by a model matching method. In the previous paper, the authors confirmed that the proposed new method is superior to Ziegler & Nichols's method through the analysis of results of the digital simulations under the assumption that the parameters of a diesel engine are known exactly. But, actually, it is very difficult to find out the value of parameters of a diesel engine accurately. And the parameters of a diesel engine are changigng according to the operating condition of a diesel engine. So, in this paper, a method to estimate the parameters of the PID controller for the speed control of a diesel engine by means of the model matching method are proposed. Also, the digital simulations are carried out in cases either with or without measurement noise. And this paper confirms that the proposed method here is superior to Ziegler & Nichols's method through the analysis of the characteristics of indicial responses.

  • PDF