• Title/Summary/Keyword: Zeuch method

Search Result 7, Processing Time 0.021 seconds

A Study on the Comparison of Injection Rate Measurement by the Bosch`s Method and the Zeuch`s Method (Bosch법과 Zeuch법에 의한 분사율 , 측정의 비교연구)

  • Ra, Jin-Hong;Kim, Jun-Hyo;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.65-75
    • /
    • 1990
  • There have been many methods for measuring the injection rate of diesel engines, but the results of them are not always identical and the reason for the discordance is not clear. Besides, a single shot injection equipment has been used for the fuel spray and the combustion research of diesel engines, but the results of experiment using the equipment don't apply to a volleyed shot injection of real engines. This paper investigates the merits and faults of the Bosch's method and the Zeuch's method, at the same, this paper also compares the injection rates of single shot inject rates of single shot injection and a volleyed shot injected by the Bosch's method. the results are summarized as follows: (1) The measurement error of the Bosch's method is about $\pm$1%, therefore, its accuracy is reliable. (2) By the Bosch's method, as the speed and the load of fuel pump increase, the injection rate becomes higher, on the contrary, the injection period(ms) shortens as the speed increases and the load decreases. (3) In this experiment, the injection rate of a single shot injection is lower than that of a volleyed shot injection under the same conditions. (4) The bulk modulus of elasticity using the Zeuch's method increases in proportion to the back pressure. (5) The Zeuch's method is less accurate than the Bosch's method.

  • PDF

A Study on the Measurement Technique for Injection Rate and the Effects of the Nozzle Hole Number on Injection Characteristics (디젤 인젝터의 분사율 측정 기술과 분공수 변화가 분사특성에 미치는 영향에 관한 연구)

  • 이기형;정재우;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • Recently, many researches for the improvement of DI diesel engines have been performed to reduce the fuel consumption and exhaust emissions. Among the various factors effect on combustion and emission in Dl diesel engines, one of the most important factors is the characteristics of the fuel spray. Accordingly, the investigation on the characteristics of spray is needed to analyze the diesel combustion exactly, In this study, the measurement technique fur injection rate using the Zeuch method was developed. In addition, the effects of nozzle hole number on the spray and flame were investigated by visualization experiment.

A Study on the Spray Characteristics of CRDI System with Ambient Pressure (분위기압력에 따른 CRDI 분사계의 분무특성 연구)

  • Kim, Sang-Am;Wang, Woo-Gyeong
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.21-28
    • /
    • 2014
  • The studies of the spray characteristics for a CRDI engine had been advancing by many researchers, because the performance and exhaust emission were significantly affected with the spray characteristics. But most experiments of the studies would be done at low ambient pressure conditions under 2MPa. In this study, injection rates were measured with Zeuch's method at various ambient pressures to 5MPa and a constant injection pressure of 130MPa. On the same conditions, non-evaporating spray images were taken with a high speed camera and analyzed carefully with Adobe Photoshop CS3. Macroscopic spray characteristics and breakup processes in the spray could be found from the examined and analyzed data. The initial injection rate, penetration, angle, velocity and breakup of the spray were practically affected with a variation of the ambient pressure, but the injection start time and injection period were scarcely affected. As the ambient pressure was higher, the breakup of a high density droplet region in the spray was happened slowly and the main position of breakup was shifted from a front of the spray to a upstream around a nozzle. The results and techniques of spray visualization and injection rate measurement in this study would be practically effective to study a high pressure diesel spray for a CRDI.

A Study on the Non-evaporating Diesel Spray Characteristics as a Function of Ambient Pressure in Constant Volume Combustion Chamber (정적챔버에서 분위기 압력에 따른 비증발 디젤분무특성 연구)

  • Jeon, Chung-Hwan;Jeong, Jeong-Hoon;Kim, Hyun-Kyu;Song, Ju-Hun;Chang, Young-June
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.645-652
    • /
    • 2010
  • The aim of this investigation was study on the non-evaporation diesel spray characteristics injected through a common-rail diesel injector under various ambient pressure. The diesel spray was investigated with observation of macroscopic characteristics such as spray tip penetration and spray cone angle by the shadowgraph and the image processing method. The numerical study was conducted using a computational fluid dynamics code, AVL-FIRE. The breakup models used were WAVE model and standard $k-{\varepsilon}$ turbulence model was applied. The numerical study used input data which spray cone angle and fuel injection rate was achieved by Zeuch's method. Comparison with experimental result such as spray tip penetration was good agreement. Distribution of droplet diameter were conducted on four planes where the axial distances were 5, 15, 39 and 49mm respectively downstream from the orifice exit.

Influence of SAC Shape on Injection Characteristics and Spray (SAC 형상이 분사특성 및 분무형상에 미치는 영향)

  • 김상진;권순익
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.11-18
    • /
    • 2001
  • To clarify the influence of SAC shape of hole-type diesel nozzle on injection characteristics and spray patterns, the injection rate of three nozzle types(standard SAC nozzle, Needle-cut VCO nozzle and VCO nozzle) were measured by Zeuch's method and pictures of the sprays were taken by CCD camera. As the pump speed became higher, the injection characteristics of the three nozzles were different. Injection rate and perssure curves at the high pressure pipe in Needle-cut VCO nozzle were much more similar to the VCO nozzle than those of the SAC nozzle. When the needle was at pre-lift period for all speeds, the spray of the Needle-cut VCO nozzle showed almost the same shape as the SAC type nozzle. There was no differense in spray pattern at the needle full-lift periods.

  • PDF

A Study on the Characteristics of Injection-rate at Different Injection Conditions in a Common-rail Diesel Injector (분사조건에 따른 커먼레일 디젤 인젝터의 분사율 특성에 관한 연구)

  • Kim, H.M.;Chung, J.W.;Lee, K.H.
    • Journal of ILASS-Korea
    • /
    • v.12 no.3
    • /
    • pp.166-171
    • /
    • 2007
  • Recently, many studies on HSDI diesel engines have been performed to reduce the fuel consumption and $CO_2$ emission. One of the prominent technique to reduce emission is a high pressure multiple injection. For this technique, the injection rate is a critical parameter in order to determine precise injection duration and timing for combustion control. Thus the purpose of this study was to investigate relationship between the injection rate and the time-signature of chamber pressure at different injection pressure conditions in a common rail direct injection type injector using the Zeuch method. Using the measured correlation constants, estimated fuel injection rates are presented at many different injection conditions.

  • PDF

A study on the spray characteristics of CRDI system with injection pressure (분사압력에 따른 CRDI 분사계의 분무특성에 관한 연구)

  • KIM, Sang-Am;WANG, Woo-Gyeong;YANG, Jung-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • Injection rate, injection quantity and injection timing of fuel are controlled precisely by electric control in CRDI system. Particularly, injection rate being influenced with injection pressure affects to spray characteristics and fuel-air ratio, so it is a very important factor in diesel combustion. In this study, injection rates in accordance with injection pressure at a constant ambient pressure were measured with Zeuch's method. Under the same condition, non-evaporating spray images were taken with a high speed camera and analyzed carefully with Adobe Photoshop CS3. Macroscopic spray characteristics and breakup processes in the spray could be found from the examined and analyzed data. Injection start time and injection period were practically affected with injection pressure. Also, initial injection rate, spray penetration, spray angle and breakup of high density droplets region in the spray were affected with injection pressure. The results and techniques of spray visualization and injection rate measurement in this study would be practically effective to study a high pressure diesel spray for common rail direct injection system.