• Title/Summary/Keyword: Zero-point energy

Search Result 119, Processing Time 0.021 seconds

Novel Model Predictive Control Method to Eliminate Common-mode Voltage for Three-level T-type Inverters Considering Dead-time Effects

  • Wang, Xiaodong;Zou, Jianxiao;Dong, Zhenhua;Xie, Chuan;Li, Kai;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1458-1469
    • /
    • 2018
  • This paper proposes a novel common-mode voltage (CMV) elimination (CMV-EL) method based on model predictive control (MPC) to eliminate CMV for three-level T-type inverters (3LT2Is). In the proposed MPC method, only six medium and one zero voltage vectors (VVs) (6MV1Z) that generate zero CMV are considered as candidates to perform the MPC. Moreover, the influence of dead-time effects on the CMV of the MPC-based 6MV1Z method is investigated, and the candidate VVs are redesigned by pre-excluding the VVs that will cause CMV fluctuations during the dead time from 6MV1Z. Only three or five VVs are included to perform optimization in every control period, which can significantly reduce the computational complexity. Thus, a small control period can be implemented in the practical applications to achieve improved grid current performance. With the proposed CMV-EL method, the CMV of the $3LT^2Is$ can be effectively eliminated. In addition, the proposed CMV-EL method can balance the neutral point potentials (NPPs) and yield satisfactory performance for grid current tracking in steady and dynamic states. Simulation and experimental results are presented to verify the effectiveness of the proposed method.

A Study on Nonlinear Interaction of Tidal Current and Wind-Induced Current using a Point Model (점모형을 이용한 조류와 취송류의 비선형 상호작용)

  • 이종찬;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.28-36
    • /
    • 1996
  • The influence of vertical eddy viscosity to the nonlinear interaction of tidal current and wind-induced current is examined using a point model. A zero-equation turbulence model is derived by simplifying the q$^2$-q$^2$1 turbulence model under the assumption that the generation of turbulence kinetic energy is balanced with its dissipation and is further modified to include the depth of frictional influence properly The zero-equation turbulence model is derived and the possibility of resonance in the presence of Coriolis effect is suggested. The amplitudes of tidal currents remain the same regardless of the applied wind stress, but the over-tide component is generated due to the nonlinear interaction of tidal current and wind-induced current. Significant changes in the vertical profile of wind-induced currents can occur according to tide-induced background turbulence. The turbulence model can give rise to misleading results when applied to the wind-driven circulation in the tide-dominated sea such as Yellow Sea unless the tide-induced background turbulence is adequately included in the parameterization of vertical eddy viscosity.

  • PDF

Applied Technologies and Effects for the Carbon Zero Office Building (업무용 탄소제로건물의 적용기술 및 효과)

  • Lee, Jae-Bum;Hong, Sung-Chul;Beak, Name-Choon;Choi, Jin-Young;Hong, You-Deog;Lee, Suk-Jo;Lee, Dong-won
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.283-295
    • /
    • 2011
  • Many actions against climate change have been taken to reduce greenhouse gases (GHGs) emissions at home and abroad. As of 2007, the GHGs emitted from buildings accounted for about 23 % of Korea's total GHGs emission, which is the second largest GHG reduction potential following industry. In this study, we introduced Carbon Zero Building (CZB), which was constructed by the National Institute of Environmental Research to cut down GHGs from buildings in Korea, and evaluated the main applied technologies, the amount of energy load and reduced energy, and economic values for CZB to provide data that could be a basis in the future construction of this kind of carbon-neutral buildings. A total of 66 technologies were applied for this building in order to achieve carbon zero emissions. Applied technologies include 30 energy consumption reduction technologies, 18 energy efficiency technologies, and 5 eco-friendly technologies. Out of total annual energy load ($123.8kWh/m^2$), about 40% of energy load ($49kWh/m^2$) was reduced by using passive technologies such as super insulation and use of high efficiency equipments and the other 60% ($74.8kWh/m^2$) was reduced by using active technologies such as solar voltaic, solar thermal, and geothermal energy. The construction cost of CZB was 1.4 times higher than ordinary buildings. However, if active technologies are excluded, the construction cost is similar to that of ordinary buildings. It was estimated that we could save annually about 102 million won directly from energy saving and about 2.2 million won indirectly from additional saving by the reduction in GHGs and atmospheric pollutants. In terms of carbon, we could reduce 100 ton of $CO_2$ emissions per year. In our Life Cycle Cost (LCC) analysis, the Break Even Point (BEP) for the additional construction cost was estimated to be around 20.6 years.

Study on the Pressure Balance of the Hybrid Safety Injection Tank (피동충수용 혼합형 안전주입탱크의 압력평형에 관한 이론적 해석 및 시험적 연구)

  • Ryu, Sung Uk;Ryu, Hyobong;Byun, Sun-Joon;Jeon, Woo-Jin;Park, Hyun-Sik;Lee, Sung-Jae
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.185-191
    • /
    • 2016
  • The Hybrid Safety Injection Tank is a passive safety injection system that enables the safety injection water to be injected into the reactor pressure vessel throughout all operating pressures by connecting the top of the SIT and the pressurizer(PZR). In this study, the condition for balancing the pressure between the Hybrid SIT and PZR was derived theoretically. The pressure balancing condition was set at the point where the velocity of the Hybrid SIT coolant injected into the Direct Vessel Injection(DVI) line was at or above zero. If the condition was derived from a pressure network for the Hybrid SIT, pressurizer, and reactor pressure vessel, the pressure difference between the pressurizer and SIT is less than 0.07 MPa.

Relationship between Body Condition Score and Ultrasonographic Measurement of Subcutaneous Fat in Dairy Cows

  • Zulu, Victor Chisha;Nakao, Toshihiko;Moriyoshi, Masaharu;Nakada, Ken;Sawamukai, Yutaka;Tanaka, Yoshinobu;Zhang, Wen-Chang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.816-820
    • /
    • 2001
  • This study aimed at relating body condition score (BCS) to ultrasound measurements of subcutaneous fat over the areas most commonly used to BCS Holstein-Friesian cows, and determining the practicality of ultrasound measurement of subcutaneous fat for assessment of energy status of the cow. Twenty-eight cows were scored to the nearest quarter point on a scale of 1-5 (1=thin and 5=fat) using both visual and tactile techniques. On the same day, ultrasound measurements of subcutaneous fat were obtained at the lumbar transverse process, thurl and near the tailhead areas on both sides of the cow making six locations. Spearman's rank correlation coefficients between the six ultrasound locations ranged from 0.72-0.93 and were all significantly different from zero (p<0.01). Correlation coefficients between BCS and the mean lumbar, thurl and tailhead ultrasound measurements ranged between 0.67-0.72 and were also significantly different from zero (p<0.01). BCS was highly and significantly correlated to ultrasound measurements of subcutaneous fat. Ultrasound can be used independently or in conjunction with BCS to estimate the nutrition and energy status of cows.

Serial line multiplexing method based on bipolar pulse for PET

  • Kim, Yeonkyeong;Choi, Yong;Kim, Kyu Bom;Leem, Hyuntae;Jung, Jin Ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3790-3797
    • /
    • 2021
  • Although the individual channel readout method can improve the performance of PET detectors with pixelated photo-sensors, such as silicon photomultiplier (SiPM), this method leads to a significant increase in the number of readout channels. In this study, we proposed a novel multiplexing method that could effectively reduce the number of readout channels to reduce system complexity and development cost. The proposed multiplexing circuit was designed to generate bipolar pulses with different zero-crossing points by adjusting the time constant of the high-pass filter connected to each channel of a pixelated photo-sensor. The channel position of the detected gamma-ray was identified by estimating the width between the rising edge and the zero-crossing point of the bipolar pulse. In order to evaluate the performance of the proposed multiplexing circuit, four detector blocks, each consisting of a 4 × 4 array of 3 mm × 3 mm × 20 mm LYSO and a 4 × 4 SiPM array, were constructed. The average energy resolution was 13.2 ± 1.1% for all 64 crystal pixels and each pixel position was accurately identified. A coincidence timing resolution was 580 ± 12 ps. The experimental results indicated that the novel multiplexing method proposed in this study is able to effectively reduce the number of readout channels while maintaining accurate position identification with good energy and timing performance. In addition, it could be useful for the development of PET systems consisting of a large number of pixelated detectors.

A Computer Program for 2-D Fluid-Structure-Soil Interaction Analysis (2차원 유체- 구조물-지반 상호작용해석 전산프로그램)

  • 김재민
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.427-434
    • /
    • 2000
  • This paper presents a computer program for a 2-D fluid-structure-soil interaction analysis. With this computer program the fluid can be modeled by a spurious free 4-node displacement-based fluid element which uses rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and near field soil are discretized by the standard finite elements while the unbounded far field soil are discretized by the standard finite elements while the unbounded far field soil is represented by the frequency dependent dynamic infinite elements. Sine this method models directly the fluid-structure-soil system it can be applied to the dynamci analysis of 2-D liquid storage structure with complex geometry. For the purpose of verification dynamic analyses for tanks on a rigid foundation and on compliant embankment are carried out. Comparison of the present results with those by ANSYS program shows good agreement.

  • PDF

Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems (2차원 유체-구조뭍-지반계의 지진응답해석)

  • 윤정방;장수혁;김재민;홍선기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.289-296
    • /
    • 2000
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF

Photovoltaic Micro Converter Operated in Boundary Conduction Mode Interfaced with DC Distribution System

  • Seo, Gab-Su;Shin, Jong-Won;Cho, Bo-Hyung;Lee, Kyu-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.44-45
    • /
    • 2011
  • Research on photovoltaic (PV) generation is taking a lot of attention due to its infinity and environment-friendliness with decrease of price per PV cell. While central inverters connect group of PV modules to utility grid in which maximum power point tracking (MPPT) for each module is difficult, micro inverter is attached on each module so that MPPT for individual modules can be easily achieved. Moreover, energy generation and consumption efficiency can be much improved by employing direct current (DC) distribution system. In this paper, a digitally controlled PV micro converter interfacing PV to DC distribution system is proposed. Boundary conduction mode (BCM) is utilized to achieve zero voltage switching (ZVS) of active switch and eliminate reverse recovery problem of passive switch. A 120W prototype boost PV micro converter is implemented to verify the feasibility and experimental results show higher than 98% efficiency at peak power and 97.29% of European efficiency.

  • PDF

Earthquake Response Analysis for 2-D Fluid-Structure-Soil Systems (2차원 유체-구조물-지반계의 지진응답해석)

  • 윤정방;장수혁;김재민
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.132-137
    • /
    • 2001
  • This paper presents a method of seismic analysis for a 2-D fluid-structure-soil interaction systems. With this method, the fluid can be modeled by spurious free 4-node displacement-based fluid elements which use rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and the near-field soil are discretized by the standard 2-D finite elements, while the unbounded far-field soil is represented by the dynamic infinite elements in the frequency domain. Since this method directly models the fluid-structure-soil interaction systems, it can be applied to the dynamic analysis of a 2-D liquid storage structure with complex geometry. Finally, results of seismic analyses are presented for a spent fuel storage tank embedded in a layered half-space and a massive concrete dam on a layered half-space.

  • PDF