• Title/Summary/Keyword: Zero-phase angle

Search Result 69, Processing Time 0.027 seconds

Voltage Angle Control of Surface Permanent Magnet Synchronous Motor for Low-Cost Applications

  • Lee, Kwang-Woon;Kim, Guechol
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.716-722
    • /
    • 2018
  • This paper presents a voltage angle control strategy for surface permanent magnet synchronous motor (SPMSM) drives used in low-cost applications, wherein a current vector control is not employed. In the proposed method, the current vector control scheme, which requires high precision phase-current sensing units and a fast calculation capability of a motor drive controller, is replaced with the voltage angle controller. The proposed voltage angle controller calculates a d-axis voltage command to make the d-axis current zero by using a simple equation obtained from the voltage equation of SPMSM. The proposed method shows performance similar to the current vector controlled SPMSM drive during steady-states and its structure is very simple and thus it can be easily implemented with a low-cost microcontroller. The effectiveness of the proposed method is verified through simulations and experiments.

A Speed Sensorless Vector Control Using the Zero Sequence Third Harmonic Voltages (영상부 3고조파를 이용한 유도전동기의 속도센서없는 벡터제어)

  • 최정수;유완식;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.388-394
    • /
    • 1998
  • In this paper, we propose a speed sensorless control of the saturated induction motor using the zero sequence third harmonic voltages and a compensation method of the stator resistance variations. The air-gap flux of the saturated induction motor contains the space harmonic components rorating synchronous frequency. As a function of the air-gap flux saturation, the dominant third harmonic voltage is used to compensate the non-linear variations of the mutual inductance depending on the saturation level of the motor. and also the stator resistance variations can be measured with the phase angle between the voltage vector and the zero sequencial voltages. The validity of the proposed compensation scheme in the speed sensorless control using rotor flux observer is verified by simulations.

  • PDF

A Study on the accuracy of Rangefinder between vessels by use of GPS (GPS를 이용한 선간거리계의 정확도에 관한 연구)

  • 김광홍
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.215-226
    • /
    • 1999
  • The experimented rangefinder consist of sets of V/A-Code GPS and sets of L1 C/A-code & carrier phase receivers connected by two spread spectrum radio modems in order to measure relative range and bearing between two ship antennas by real time, comparing and analyzing accuracy of both GPS receivers at the fix point on the land by means of executing zero baseline test by C/A code and by carrier phase as well as measuring distance range 5m, 10m, 15m between each other receivers. The results from the measurement of relative range and bearing are as follows as ;1. According to the results from zero baseline test, the average error by C/A-code receiver is less than 0.1m, which proves theories from published books but when each GPS receivers track different satellites, the range accuracy error becomes up to 100m by means of S/A. Because of this sudden wide range error, rangefinder is not appropriate at relative range measurement without additional modification of the algorism of the GPS receiver itself.2. According to relative range measurement by Carrier Phase and zero baseline test at static condition, the range error is less than 3.5cm in case that it passes more than 5 minutes after GPS sets can track simultaneously more than 6 satellites. Its main reason is understood that the phase center of antenna is bigger than geodetic antenna.3. When range measurement of two receivers from 5m, to 10m to 15m, the each range error is 0.340m, 0.190m, 0.011m and each standard variation is 0.0973m, 0.0884m, 0.0790m. The range error and standard variation are in inverse proportion to distance between two receivers. 4. L1 Carrier Phase GPS generally needs 5 minutes to fix and during this ambiguity search, the relative range and bearing angle is shown to be various.

  • PDF

A Theoretical Study for the Thermal Diffusivity Measurement of Semi-Infinite Solid Using Photothermal Displacement Method (광열변위법을 이용한 반무한 고체의 열확산계수 결정에 대한 이론적 연구)

  • Jeon, Pil-Soo;Lee, Kwang-Jai;Yoo, Jai-Suk;Park, Young-Moo;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1747-1755
    • /
    • 2002
  • A complete theoretical treatment of the photothermal displacement technique has been performed for thermal diffusivity measurement in semi-infinite solid materials. The influence of the parameters, such as radius and modulation frequency of the heating beam and the thermal diffusivity, was studied. Usually, thermal diffusivity was determined by the deformation angle and phase angle as the relative position between the heating and probe beams. In this study, we proposed the simple analysis method based on the real part of deformation gradient as the relative position between two beams. It is independent in the parameters such as power of heating beam, absorption coefficient, reflectivity, Poisson's ratio, and thermal expansion coefficient.

A Study of Optimal Impact Angle Control Laws (최적 충돌각 제어법칙에 관한 연구)

  • 송택렬;신상진
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.211-218
    • /
    • 1998
  • As a part of trajectory modulation to increase system survivability and terminal effectiveness, impact angle control is required in the terminal phase of tactical missile systems. The missile systems are not allowed to have high altitude to reduce probability of detection by sensors of missile defense systems. In this paper, an analytic form of a time-optimal control law is suggested in the case of constrained missile maneuverability and impact angle under the assumption of a zero-lag autopilot. The control law is obtained by establishing optimal missile-target engagement geometry in the vertical plane. Extension of the law for missiles with autopilot response lags requiring a numerical solution is studied by introducing an iterative algorithm for optimal switching time determination of which the initial switching instants are obtained from the analytic solution. Also suggested is a closed-form impact angle control law derived by an energy-optimal approach. The performances of the proposed guidance laws are evaluated by a series of computer runs.

  • PDF

Wall Shear Stress Distribution in the Abdominal Aortic Bifurcation : Influence of wall Motion, Impedance Phase Angle, and non-Newtonian fluid (복부대동맥 분기관에서의 벽면전단응력 분포 벽면운동과 임피던스 페이즈 앵글과 비뉴턴유체의 영향)

  • Choi J.H.;Kim C.J.;Lee C.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.261-271
    • /
    • 2000
  • The present study investigated flow dynamics of a two-dimensional abdominal aortic bifurcation model under sinusoidal flow conditions considering wall motion. impedance phase angle(time delay between pressure and flow waveforms), and non-Newtonian fluid using computational fluid dynamics. The wall shear stress showed large variations in the bifurcated region and the wall motion reduced amplitude of wall shear stress significantly. As the impedance phase angle was changed to more negative values, the mean wall shear stress (time-averaged) decreased while the amplitude (oscillatory) of wall shear stress increased. At the curvature site on the outer wall where the mean wall shear stress approached zero. influence of the phase angle was relatively large. The mean wall shear stress decreased by $50\%$ in the $-90^{\circ}$ phase angle (flow wave advanced pressure wave by a quarter period) compared to the $0^{\circ}$ phase angle while the amplitude of wall shear stress increased by $15\%$. Therefore, hypertensive patients who tend to have large negative phase angles become more vulnerable to atherosclerosis according to the low and oscillatory shear stress theory because of the reduced mean and the increased oscillatory wall shear stresses. Non-Newtonian characteristics of fluid substantially increased the mean wall shear stress resulting in a less vulnerable state to atherosclerosis.

  • PDF

A Novel Control Scheme of Three-Phase PWM Rectifiers Eliminating AC-Side Sensors (교류측 센서를 제거한 3상 PWM 정류기의 새로운 제어)

  • 이동춘;이지명;임대식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.592-600
    • /
    • 2000
  • In this paper, a novel control scheme of three-phase PWM rectifiers using only dc-side sensors is proposed. The phase currents are reconstructed from switching states of the rectifier and the dc output current. For effective current control, the currents are estimated by a predictive state observer. Also, both the phase angle and the magnitude of the source voltage are estimated by controlling the deviation between the model current and the system current to be zero. The validity of the proposed ac phase and current sensorless technique has been verified by experimental results.

  • PDF

A 48V-400V Non-isolated Bidirectional Soft-switching DC-DC Converter for Residential ESS (PPS 제어기법을 적용한 48V-400V 비절연 양방향 DC-DC컨버터)

  • Jeong, Hyeon-Ju;Kwon, Min-Ho;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.190-198
    • /
    • 2018
  • This paper proposes a nonisolated, bidirectional, soft-switching DC - DC converter with PWM plus phase shift (PPS) control. The proposed converter has an input-parallel/output-series configuration and can achieve the interleaving effect and high voltage gains, resulting in decreased voltage ratings in all related devices. The proposed converter can operate under zero-voltage switching (ZVS) conditions for all switches in continuous conduction mode. The power flow of the proposed converter can be controlled by changing the phase shift angle, and the duty is controlled to balance the voltage of four high voltage side capacitors. The PPS control device of the proposed converter is simple in structure and presents symmetrical switching patterns under a bidirectional power flow. The PPS control also ensures ZVS during charging and discharging at all loads and equalizes the voltage ratings of the output capacitors and switches. To verify the validity of the proposed converter, an experimental investigation of a 2 kW prototype is performed in both charging and discharging modes under different load conditions and a bidirectional power flow.

A Study on the Harmonic Current Characteristics of Universal Motro with Speed Controller (유니버셜모터 속도제어기의 고조파전류 특성에 관한 연구)

  • 임홍우;박수강;백형래
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.132-140
    • /
    • 2001
  • A universal motor is a small dc series machine motor that is designed to operate from an ac machine. The characteristics of universal motors are high no-load and staring torque. Because of the high operating speed, the size of these motors for a given hp rating is typically smaller that other fractional hp ac machine, making it ideal for hand-held tools and appliances where weight, compactness, and speed are importance factors. A phase-angle control with AC drive system gains a high popularity due to their simple implementation, but contains the disadvantage of their poor input power factor, subharmonic current. Pulse width modulation control with DC drive systems increase the power factor as without delay phase angle. This paper analyzed the subharmonic characteristics of the phase angle control system that is controlled by zero voltage crossing similar to traditional method, and the dc chopper system that is used PWM.

  • PDF

A study on the dither-stripping with dither motion sensor of a ring laser gyroscope (링레이저 자이로의 몸체진동 검출센서를 이용한 dither-stripping 연구)

  • Sim, Gyu Min;Im, Hu Jang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.63-71
    • /
    • 2003
  • In this paper we dicuss the dither-stripping methods by V-F(voltage to frequency) conversion of the output of angular velocity sensor which is for detecting the dither motion of the ring laser cavity. In this case, it is very important to evaluate the pulse-to-pulse scale factor between the ring lase output pulse and V-F output pulse, and also to compensate the zero offset of the V-F output pulse. In the case of the dither-stripping by the V-F conversion of angular velocity sensor output, there is a big angle uncertainty in the process of compensating the zero offset due to the dither noise for compensating the V-F output. By differential, the phase of the V-F output is changed. So, to compensate it, we change 90deg of the phase of angular velocity sensor output and delay half sampling time of the phase of ring laser output in advance. In this case the pulse-to-pulse scale factor can be evaluated by the standard deviation of each pulse. We can get the good result of the dither-stripping output by this angle differential method.