• Title/Summary/Keyword: Zero-forcing (ZF) receiver

Search Result 27, Processing Time 0.023 seconds

Error Performance of Spatial-temporal Combining-based Spatial Multiplexing UWB Systems Using Transmit Antenna Selection

  • Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.215-219
    • /
    • 2012
  • This paper applies transmit antenna selection algorithms to spatial-temporal combining-based spatial multiplexing (SM) ultra-wideband (UWB) systems. The employed criterion is based on the largest minimum output signal-to-noise ratio of the multiplexed streams. It is shown via simulations that the bit error rate (BER) performance of the SM UWB systems based on the two-dimensional Rake receiver is significantly improved by antenna diversity through transmit antenna selection on a log-normal multipath fading channel. When the transmit antenna diversity through antenna selection is exploited in the SM UWB systems, the BER performance of the spatial-temporal combining-based zero-forcing (ZF) receiver is also compared with that of the ZF detector followed by the Rake receiver.

MIMO Channel Diagonalization: Linear Detection ZF, MMSE (MIMO 채널 대각화: 선형 검출 ZF, MMSE)

  • Yang, Jae Seung;Shin, Tae Chol;Lee, Moon Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Compared to the MIMO system using the spatial multiplexing methods and the MIMO system using the diversity scheme achieved a high rate, but the lower the diversity gain to improve the data transmission reliability should separate the spatial stream at the MIMO receiver. In this paper, we compared Channel capacity detection methods with the Lattice code, the 3-user interference channel and linear channel interference detection methods ZF (Zero Forcing) and MMSE (Minimum Mean Square Error) detection methods. The channel is a Diagonal channel. In other words, Diagonal channel is confirmed by the inverse matrix satisfies the properties of Jacket are element-wise inverse to $[H]_N[H]_N^{-1}=[I]_N$.

MIMO Detection Algorithms in Binary PAM DS UWB Communication (이진 PAM DS UWB 통신에서 MIMO 검출 기법)

  • Kang, Yun-jeong;Kim, Gil-nam;Kim, Sang-choon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.447-450
    • /
    • 2009
  • In this paper, binary pulse-antipodal modulation (2PAM) direct-sequence (DS) ultra-wideband (UWB) system is applied to multiple input multiple output (MIMO) system using vertical bell lab layered space-time (V-BLAST) structure to achieve high-data-rate communications over indoor wireless channels. The relationship between antenna dimension and BER performance of 2PAM DS UWB MIMO system is discussed. In the receiver of UWB-MIMO system, various MIMO detection algorithms such as zero-forcing (ZF), ZF-ordered successive interference cancellation (OSIC), minimum-mean-square-error (MMSE), MMSE-OSIC and maximum likelihood (ML) are comparatively studied.

  • PDF

Spatial Multiplexing Receivers in UWB MIMO Systems based on Prerake Combining

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this paper, various ultra-wideband (UWB) spatial multiplxing (SM) multiple input multiple output (MIMO) receivers based on a prerake diversity combining scheme are discussed and their performance is analyzed. Several UWB MIMO detection approaches such as zero forcing (ZF), minimum mean square error (MMSE), ordered successive interference cancellation (OSIC), sorted QR decomposition (SQRD), and maximum likelihood (ML) are considered in order to cope with inter-channel interference. The UWB SM systems based on transmitter-side multipath preprocessing and receiver-side MIMO detection can either boost the transmission data rate or offer significant diversity gain and improved BER performance. The error performance and complexity of linear and nonlinear detection algorithms are comparatively studied on a lognormal multipath fading channel.

Performance Evaluation of Channel Estimation and Interference Cancellation Techniques for Multiuser with Transmitter Diversity System (송신 다이버시티를 가진 다중 사용자 시스템에서 채널 추정 및 간섭 제거 기법들의 성능 평가)

  • 유형준;이상문;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7A
    • /
    • pp.641-650
    • /
    • 2002
  • Space-Time Block Code(STBC) provides full diversity gains with simple linear processing at the receiver. Interference Cancellation(IC) techniques in system using STBC improve the capacity and performance of wireless systems with co-channel users. Various IC techniques, Minimum Mean-Squared Error(MMSE) and Zero-Forcing(ZF) algorithms in system with STBC were proposed in the literatures in multiuser environment. The performance of these IC techniques were simulated by assuming perfect channel state information(CSI) of multiuser at the receiver. However, in practice it is difficult to know perfect CSI of multiuser at the receiver. Thus, channel estimation scheme is essential at the receiver. Also SNR estimation scheme is required to operate the MMSE IC algorithm. In this paper, we present estimation schemes of CSI and SNR using training sequences. Through extensive computer simulation, we compare and evaluate the performance of IC techniques using the proposed CSI and SNR estimation techniques.

Statistical Precoder Design for Spatial Multiplexing Systems in Correlated MIMO Fading Channels (높은 안테나 상관도를 갖는 다중입출력 공간 다중화 시스템을 위한 통계적 프리코딩 기법)

  • Moon, Sung-Hyun;Kim, Jin-Sung;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.223-231
    • /
    • 2011
  • It has been shown that the performance of multiple-input multiple-output (MIMO) spatial multiplexing systems is significantly degraded when spatial correlation exists between transmit and receive antenna pairs. In this paper, we investigate designs of a new statistical precoder for spatial multiplexing systems with maximum likelihood (ML) receiver which requires only correlation statistics at the transmitter. Two kinds of closed-form solution precoders based on rotation and power allocation are proposed by means of maximizing the minimum E tlidean distance of joint symbol constellations. In addition, we extend our results to linear receivers for correlated channels. We provide a method which yields the same profits from the proposed precoders based on a simple zero-forcing (ZF) receiver. The simulation shows that 2dB and 8dB gains are achieved for ML and ZF systems with two transmit antennas, respectively, compared to the conventional systems.

Joint Estimation and Compensation for Frequency Selective IQ Imbalance in OFDM Systems (OFDM 시스템에서의 주파수 선택적 IQ 불균형의 추정 및 보상)

  • Jin, Young-Hwan;Kim, Hye-Jin;Kim, Jik-Dong;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.225-234
    • /
    • 2008
  • Orthogonal Frequency Division Multiplexing (OFDM) systems utilizing direct conversion receiver suffer from frequency selective (FS) and frequency independent (FI) phase and gain imbalances caused by imperfect local oscillator and low pass filter. In this paper, we analyze the impacts of the transmit/receive IQ imbalances on the system and propose the estimation and compensation schemes for those imbalances. The preamble signals coded by Alamouti scheme in the frequency domain could be used in the estimation of relatively large IQ imbalances with FS and FI characteristics and the estimation results are used for the compensation of distortions caused by the FI and FS IQ imbalances. The optimal maximum likelihood (ML) receiver or suboptimal ordered successive interference cancallation (OSIC) receiver utilizing the estimation results show symbol error rate (SER) performance improvement compared to zero-forcing (ZF) technique due to diversity gain inherent in the frequency domain IQ imbalances combined with the frequency selective channels.

MIMO Receiver Using RBF Network Over Rich-Scattering fading channels (Rich-Scattering 페이딩 채널에서 RBF Network를 이용한 MIMO 수신기)

  • 고균병;강창언;홍대식
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.8
    • /
    • pp.301-306
    • /
    • 2003
  • This paper proposes a novel detection scheme using a radial basis function (RBF) network in a multi-input multi-output (MIMO) environment. In order to evaluate the performance of the proposed MIMO-RBF receiver, simulations are performed over the rich-scattering fading channel. Simulation results confirm that the proposed scheme shows the similar bit-error rate (BER) performance of a maximum likelihood detection (MLD) and outperforms Vertical-Bell Laboratories Layered Space-Time using minimum-mean-square-error nulling (VBLAST-MMSE) as well as VBLAST using zero-forcing nulling (VBLAST-ZF). Moreover, we investigate the effect on the performance of the number of RBF center with two modulation formats (BPSK and QPSK) and different number of transmit and receive antennas. The performance of the proposed detector is verified with respect to an initialization-rate of RBF centers.

Multiuser Heterogeneous-SNR MIMO Systems

  • Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2607-2625
    • /
    • 2014
  • Previous studies on multiuser multiple-input multiple-output (MIMO) mostly assume a homogeneous signal-to-noise ratio (SNR), where each user has the same average SNR. However, real networks are more likely to feature heterogeneous SNRs (a random-valued average SNR). Motivated by this fact, we analyze a multiuser MIMO downlink with a zero-forcing (ZF) receiver in a heterogeneous SNR environment. A transmitter with Mantennas constructs M orthonormal beams and performs the SNR-based proportional fairness (S-PF) scheduling where data are transmitted to users each with the highest ratio of the SNR to the average SNR per beam. We develop a new analytical expression for the sum throughput of the multiuser MIMO system. Furthermore, simply modifying the expression provides the sum throughput for important special cases such as homogeneous SNR, max-rate scheduling, or high SNR. From the analysis, we obtain new insights (lemmas): i) S-PF scheduling maximizes the sum throughput in the homogeneous SNR and ii) under high SNR and a large number of users, S-PF scheduling yields the same multiuser diversity for both heterogeneous SNRs and homogeneous SNRs. Numerical simulation shows the interesting result that the sum throughput is not always proportional to M for a small number of users.

Error Performance of UWB-MIMO system according to channel detection methods (UWB-MIMO 시스템에서 채널 검파 방식에 따른 성능 비교분석)

  • Kang, Yun-Jeong;Baek, Sun-Young;Kim, Sang-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.113-114
    • /
    • 2008
  • In this paper, binary pulse-position modulation (2PPM) time-hoping (TH) ultra-wideband (UWB) system is applied to multiple input multiple output (MIMO) system using vertical bell lab layered space-time (V-BLAST) structure to achieve high-data-rate communications. This UWB-MIMO system and its receivers are analyzed, and its BER performances are evaluated. In the receiver, various MIMO detection algorithms such as zero-forcing (ZF), ZF-ordered successive interference cancellation (OSIC), minimum-mean-square-error (MMSE), MMSE-OSIC and maximum likelihood (ML) are comparatively studied.

  • PDF