• Title/Summary/Keyword: Zero-equation model

Search Result 109, Processing Time 0.025 seconds

Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis

  • Chen, Lian-meng;Hu, Dong;Deng, Hua;Cui, Yu-hong;Zhou, Yi-yi
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1031-1043
    • /
    • 2016
  • Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis is studied in this paper. First, the element length was extracted as a fundamental variable, and the relationship between element length change and element internal force was established. By setting all pre-stresses in active cables to zero, the equation between the pre-stress deviation in the passive cables and the element length error was obtained to analyze and evaluate the error effects under different construction schemes. Afterwards, based on the probability statistics theory, the mathematical model of element length error is set up. The statistical features of the pre-stress deviation were achieved. Finally, a cable-strut tensile structure model with a diameter of 5.0 m was fabricated. The element length errors are simulated by adjusting the element length, and each member in one symmetrical unit was elongated by 3 mm to explore the error sensitivity of each type of element. The numerical analysis of error sensitivity was also carried out by the FEA model in ANSYS software, where the element length change was simulated by implementing appropriate temperature changes. The theoretical analysis and experimental results both indicated that different elements had different error sensitivities. Likewise, different construction schemes had different construction precisions, and the optimal construction scheme should be chosen for the real construction projects to achieve lower error effects, lower cost and greater convenience.

Patent Keyword Analysis using Gamma Regression Model and Visualization

  • Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.143-149
    • /
    • 2022
  • Since patent documents contain detailed results of research and development technologies, many studies on various patent analysis methods for effective technology analysis have been conducted. In particular, research on quantitative patent analysis by statistics and machine learning algorithms has been actively conducted recently. The most used patent data in quantitative patent analysis is technology keywords. Most of the existing methods for analyzing the keyword data were models based on the Gaussian probability distribution with random variable on real space from negative infinity to positive infinity. In this paper, we propose a model using gamma probability distribution to analyze the frequency data of patent keywords that can theoretically have values from zero to positive infinity. In addition, in order to determine the regression equation of the gamma-based regression model, two-mode network is constructed to visualize the technological association between keywords. Practical patent data is collected and analyzed for performance evaluation between the proposed method and the existing Gaussian-based analysis models.

Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes

  • Daikh, Ahmed Amine;Drai, Ahmed;Houari, Mohamed Sid Ahmed;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.643-656
    • /
    • 2020
  • This article presents a comprehensive static analysis of simply supported cross-ply carbon nanotubes reinforced composite (CNTRC) laminated nanobeams under various loading profiles. The nonlocal strain gradient constitutive relation is exploited to present the size-dependence of nano-scale. New higher shear deformation beam theory with hyperbolic function is proposed to satisfy the zero-shear effect at boundaries and parabolic variation through the thickness. Carbon nanotubes (CNTs), as the reinforced elements, are distributed through the beam thickness with different distribution functions, which are, uniform distribution (UD-CNTRC), V- distribution (FG-V CNTRC), O- distribution (FG-O CNTRC) and X- distribution (FG-X CNTRC). The equilibrium equations are derived, and Fourier series function are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear or sinusoidal mechanical loadings. Numerical results are obtained to present influences of CNTs reinforcement patterns, composite laminate structure, nonlocal parameter, length scale parameter, geometric parameters on center deflection ad stresses of CNTRC laminated nanobeams. The proposed model is effective in analysis and design of composite structure ranging from macro-scale to nano-scale.

A Robust Fault Location Algorithm for Single Line-to-ground Fault in Double-circuit Transmission Systems

  • Zhang, Wen-Hao;Rosadi, Umar;Choi, Myeon-Song;Lee, Seung-Jae;Lim, Il-Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This paper proposes an enhanced noise robust algorithm for fault location on double-circuit transmission line for the case of single line-to-ground (SLG) fault, which uses distributed parameter line model that also considers the mutual coupling effect. The proposed algorithm requires the voltages and currents from single-terminal data only and does not require adjacent circuit current data. The fault distance can be simply determined by solving a second-order polynomial equation, which is achieved directly through the analysis of the circuit. The algorithm, which employs the faulted phase network and zero-sequence network with source impedance involved, effectively eliminates the effect of load flow and fault resistance on the accuracy of fault location. The proposed algorithm is tested using MATLAB/Simulink under different fault locations and shows high accuracy. The uncertainty of source impedance and the measurement errors are also included in the simulation and shows that the algorithm has high robustness.

MATHEMATICAL MODELLING AND ITS SIMULATION OF A QUASI-STATIC THERMOELASTIC PROBLEM IN A SEMI-INFINITE HOLLOW CIRCULAR DISK DUE TO INTERNAL HEAT GENERATION

  • Gaikwad, Kishor R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.69-81
    • /
    • 2015
  • The present paper deals with the determination of temperature, displacement and thermal stresses in a semi-infinite hollow circular disk due to internal heat generation within it. Initially the disk is kept at arbitrary temperature F(r, z). For times t > 0 heat is generated within the circular disk at a rate of g(r, z, t) $Btu/hr.ft^3$. The heat flux is applied on the inner circular boundary (r = a) and the outer circular boundary (r = b). Also, the lower surface (z = 0) is kept at temperature $Q_3(r,t)$ and the upper surface ($Z={\infty}$) is kept at zero temperature. Hollow circular disk extends in the z-direction from z = 0 to infinity. The governing heat conduction equation has been solved by using finite Hankel transform and the generalized finite Fourier transform. As a special case mathematical model is constructed for different metallic disk have been considered. The results are obtained in series form in terms of Bessel's functions. These have been computed numerically and illustrated graphically.

NONLINEAR ANALYSIS OF SELF-EXCITED VIBRATION IN WHEELED TRACTOR VEHICLE'S DRIVELINE

  • Li, X.H.;Zhang, J.W.;Zeng, C.C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.535-545
    • /
    • 2006
  • A nonlinear analysis of torsional self-excited vibration in the driveline system for wheeled towing tractors was presented, with a 2-DOF mathematical model. The vibration system was described as a second-order ordinary differential equation. An analytical approach was proposed to the solution of the second-order ODE. The mathematical neighborhood concept was used to construct the interior boundary and the exterior boundary. The ODE was proved to have a limit cycle by using $Poincar\'{e}-Bendixson$ Annulus Theorem when two inequalities were satisfied. Because the two inequalities are easily satisfied, the self-excited vibration is inevitable and even the initial slip rate is little. However, the amplitude will be almost zero when the third inequality is satisfied. Only in a few working modes of the towing tractor the third inequality is not satisfied. It is shown by experiments that the torsional self-excited vibration in the driveline of the vehicle is obvious.

Discretization of Nonlinear Systems with Delayed Multi-Input VIa Taylor Series and Scaling and Squaring Technique

  • Yuanliang Zhang;Chong Kil To
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1975-1987
    • /
    • 2005
  • An input time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via digital computers. In this paper a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed. The mathematical structure of the new discretization method is analyzed. On the basis of this structure the sampled-data representation of nonlinear systems with time-delayed multi-input is presented. The delayed multi-input general equation has been derived. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. Additionally, hybrid discretization schemes that result from a combination of the scaling and squaring technique (SST) with the Taylor series expansion are also proposed, especially under conditions of very low sampling rates. Practical issues associated with the selection of the method's parameters to meet CPU time and accuracy requirements, are examined as well. A performance of the proposed method is evaluated using a nonlinear system with time delay maneuvering an automobile.

Experimental Study on the Characteristics of Pressure Fluctuation in the Combustion Chamber with Branch Tube (분기관을 가진 연소 챔버 내 압력변동 특성에 관한 실험적 연구)

  • Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.552-558
    • /
    • 2009
  • An experimental study using the combustor with branch tube was conducted in order to model the industry combustor with FGR (flue gas recirculation) system and to study a thermo-acoustic instability generated by a branch tube. The branch tube is a structure used to modify a system geometry and then to change its pressure field, and the thermo-acoustic instability, usually occurs in a confined geometry, can result in serious problems on industrial combustors. Thus understanding of the instability created by modifying geometry of combustor is necessary to design and operate combustor with FGR system. Pressure fluctuation in the combustion chamber was observed according to diameter and length of branch and it was compared with the solution of 1-D wave equation. It was found that branch tube affects the pressure field in the combustion chamber, and the pressure fluctuation in the combustion chamber was reduced to almost zero when phase difference between an incipient wave in the combustion chamber and a reflected wave in the branch tube is $\pi$ at the branch point. Also, the reduction of pressure fluctuation is irrespective of the installed height of branch tube if it is below $h^*=0.9$ in the close-open tube and open-open tube.

Higher order flutter analysis of doubly curved sandwich panels with variable thickness under aerothermoelastic loading

  • livani, Mostafa;MalekzadehFard, Keramat;Shokrollahi, Saeed
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • In this study, the supersonic panel flutter of doubly curved composite sandwich panels with variable thickness is considered under aerothermoelastic loading. Considering different radii of curvatures of the face sheets in this paper, the thickness of the core is a function of plane coordinates (x,y), which is unique. For the first time in the current model, the continuity conditions of the transverse shear stress, transverse normal stress and transverse normal stress gradient at the layer interfaces, as well as the conditions of zero transverse shear stresses on the upper and lower surfaces of the sandwich panel are satisfied. The formulation is based on an enhanced higher order sandwich panel theory and the vertical displacement component of the face sheets is assumed as a quadratic one, while a cubic pattern is used for the in-plane displacement components of the face sheets and the all displacement components of the core. The formulation is based on the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear approximation, the one-dimensional Fourier equation of the heat conduction along the thickness direction, and the first-order piston theory. The equations of motion and boundary conditions are derived using the Hamilton principle and the results are validated by the latest results published in the literature.

Boundary Treatment for Axi-symmetric Topography (축대칭 지형에 적합한 경계처리기법)

  • Jung, Tae-Hwa;Shin, Hyun-Jung;Son, Minwoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.2
    • /
    • pp.505-511
    • /
    • 2013
  • A new boundary treatment technique which can be applied to axi-symmetric topography with inclined bottom was developed. Although the finite element method is good for complex geometry, there is no proper boundary treatment when a boundary is not a vertical section because the water depth at the coastline becomes zero. In this study, we developed a new boundary treatment for inclined bottom using the analytical solution for long wave. To develope a model, the mild-slope equation was used and then, a computational domain is divided into an analytical region and a numerical region. By combining a numerical and an analytical solutions, a complete solution was obtained. The developed solution was validated by comparing with a previous analytical solution.