• Title/Summary/Keyword: Zero-Current Switching(ZCS)

Search Result 173, Processing Time 0.041 seconds

DC-DC Boost Converter using Offset-Controlled Zero Current Sensor for Low Loss Thermoelectric Energy Harvesting Circuit (저 손실 열전변환 하베스팅을 위해 제로전류센서의 오프셋을 조절하는 부스트 컨버터)

  • Joo, Sunghwan;Kim, Kiryong;Jung, Dong-Hoon;Jung, Seong-Ook
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.373-377
    • /
    • 2016
  • This paper presents a low power boost converter using offset controlled Zero Current Sensor (ZCS) control for thermoelectric energy harvesting.[1] [5] Offset controlled ZCS uses adjustable pre-offset that is controled by 6bit code each connected gate of NMOS for switching. Offset controlled ZCS demonstrates an efficiency that is higher than using analog comparator ZCS and that is smaller area than using delay line ZCS. Experimentally, the offset controlled ZCS system consumes 10 times less power than analog comparator ZCS based system at similar performance.

Improved Zero-Current-Switching(ZCS) PWM Switch Cell with Minimum Additional Conduction Losses

  • Park, Hang-Seok;Cho, B.H.
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.71-77
    • /
    • 2001
  • This paper proposes a new zero-current switching (ZCS) pulse-width modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero current condition. The diodes commutate softly and the reverse recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of DC to DC PWM converters is derived. The new family of ZCS PWM converters is suitable for the high power applications employing IGBTs. Among the new family of DC to DB PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5 kW prototype converter operating at 40 kHz.

  • PDF

New Zero-Current-Switching PWM Converters (새로운 영전류 스위칭 방식의 PWM 컨버터)

  • Ma, Geun-Su;Kim, Yang-Mo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.9
    • /
    • pp.467-472
    • /
    • 2001
  • In conventional zero-current-switching(ZCS) PWM converters, zero-current turn-off for main switch without increasing voltage/current stresses is achieved at a fixed frequency. The switching loss, stress, and noise, however, can\`t be minimized because they adopt auxiliary switches turned off and main switches turned on under hard-switching condition. In this paper, new ZCS-PWM converters of which all switches are always operating with soft-switching condition are proposed. Therefore, the proposed ZCS-PWM converters are most suitable for systems requiring high-power density Breadboarded ZCS-PWM boost converters using power MOSFET are constructed to verify theoretical analysis.

  • PDF

New Zero-Current-Switching PWM Converters with Soft-Switching Auxiliary Switch (소프트 스위칭방식의 보조스위치를 갖는 새로운 ZCS-PWM 컨버터)

  • Ma, Keun-Su;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1002-1004
    • /
    • 2001
  • In conventional zero-current-switching(ZCS) PWM converters, the switching loss, stress and noise can't be minimized because they adopt auxiliary switches operated in hard-switching. In this paper, new ZCS-PWM converters of which auxiliary switches always operate with soft-switching are proposed. Therefore, the proposed ZCS-PWM converters are most suitable for systems requiring high-power density. The characteristics of these converters are verified by experimental results.

  • PDF

Novel Zero-Current-Switching (BCS) PWM Switch Cell Minimizing Additional Conduction Loss

  • Park, Hang-Seok;Cho, B.H.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.37-43
    • /
    • 2002
  • This paper proposes a new zero-current switching (ZCS) pulse-width modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero current condition. The diodes commutate softly and the reverse recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of dc to dc PWM converters is derived. The new family of ZCS PWM converters is suitable for the high power applications employing IGBTs. Among the new family of dc to dc PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5㎾ prototype boost converter operating at 40KHz.

A Simple Structure of Zero-Voltage Switching (ZVS) and Zero-Current Switching (ZCS) Buck Converter with Coupled Inductor

  • Wei, Xinxin;Luo, Ciyong;Nan, Hang;Wang, Yinghao
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1480-1488
    • /
    • 2015
  • In this paper, a revolutionary buck converter is proposed with soft-switching technology, which is realized by a coupled inductor. Both zero-voltage switching (ZVS) of main switch and zero-current switching (ZCS) of freewheeling diode are achieved at turn on and turn off without using any auxiliary circuits by the resonance between the parasitic capacitor and the coupled inductor. Furthermore, the peak voltages of the main switch and the peak current of the freewheeling diode are significantly reduced by the coupled inductor. As a result, the proposed converter has the advantages of simple circuit, convenient control, low consumption and so on. The detailed operation principles and steady-state analysis of the proposed ZVS-ZCS buck converter are presented, and detailed power loss analysis and some simulation results are also included. Finally, experimental results based on a 200-W prototype are provided to verify the theory and design of the proposed converter.

Zero-Current-Switching in Full-Bridge DC-DC Converters Based on Activity Auxiliary Circuit

  • Chu, Enhui;Lu, Ping;Xu, Chang;Bao, Jianqun
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.353-362
    • /
    • 2019
  • To address the problem of circulating current loss in the traditional zero-current switching (ZCS) full-bridge (FB) DC/DC converter, a ZCS FB DC/DC converter topology and modulation strategy is proposed in this paper. The strategy can achieve ZCS turn on and zero-voltage and zero-current switching (ZVZCS) turn off for the primary switches and realize ZVZCS turn on and zero-voltage switching (ZVS) turn off for the auxiliary switches. Moreover, its resonant circuit power is small. Compared with the traditional phase shift full-bridge converter, the new converter decreases circulating current loss and does not increase the current stress of the primary switches and the voltage stress of the rectifier diodes. The diodes turn off naturally when the current decreases to zero. Thus, neither reverse recovery current nor loss on diodes occurs. In this paper, we analyzed the operating principle, steady-state characteristics and soft-switching conditions and range of the converter in detail. A 740 V/1 kW, 100 kHz experimental prototype was established, verifying the effectiveness of the converter through experimental results.

New Zero-Current-Switching PWM Converters with Low Switching Loss (손실을 최소화한 새로운 영전류 스위칭 방식의 PWM 컨버터)

  • Ma, Keun-Su;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1193-1195
    • /
    • 2000
  • In conventional zero-current-switching(ZCS) PWM converters, the switching loss, stress and noise can't be minimized because they adopt auxiliary switches operated in hard-switching. In this paper, new ZCS-PWM converters of which auxiliary switches always operate with soft-switching are proposed. Therefore, the proposed ZCS-PWM converters are most suitable for systems requiring high-power density. The characteristics of these converters are verified by results of simulation.

  • PDF

New Zero-Current-Transition (ZCT) Circuit Cell Without Additional Current Stress

  • Kim Chong-Eun;Choi Eun-Suk;Youn Myung-Joong;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.294-298
    • /
    • 2003
  • In this paper, the new zero-current-transition (ZCT) circuit cell is proposed. The main switch is turned-off under the zero current and zero voltage condition, and there is no additional current stress and voltage stress in, the main switch and the main diode. The Auxiliary switch is turned-off under the zero voltage condition, and the main diode is turned-on under the zero voltage condition, The resonant current required to obtain the ZCT is small and regenerated to the input voltage source. The operational principles of the boost converter integrated with the proposed ZCT circuit cell is analyzed theoretically and verified by the simulation and experimental result. Index terms - zero-current-transition (ZCT), zero-current- switching (ZCS), zero-voltage-switching (ZVS)

  • PDF

Active Controlled Primary Current Cutting-Off ZVZCS PWM Three-Level DC-DC Converter

  • Shi, Yong
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.375-382
    • /
    • 2018
  • A novel active controlled primary current cutting-off zero-voltage and zero-current switching (ZVZCS) PWM three-level dc-dc converter (TLC) is proposed in this paper. The proposed converter has some attractive advantages. The OFF voltage on the primary switches is only Vin/2 due to the series connected structure. The leading-leg switches can obtain zero-voltage switching (ZVS), and the lagging-leg switches can achieve zero-current switching (ZCS) in a wide load range. Two MOSFETs, referred to as cutting-off MOSFETs, with an ultra-low on-state resistance are used as active controlled primary current cutting-off components, and the added conduction loss can be neglected. The added MOSFETs are switched ON and OFF with ZCS that is irrelevant to the load current. Thus, the auxiliary switching loss can be significantly minimized. In addition, these MOSFETs are not series connected in the circuit loop of the dc input bus bar and the primary switches, which results in a low parasitic inductance. The operation principle and some relevant analyses are provided, and a 6-kW laboratory prototype is built to verify the proposed converter.