• 제목/요약/키워드: Zero voltage vector

검색결과 98건 처리시간 0.031초

Performance Analysis and Comparison of Post-Fault PWM Rectifiers Using Various Space Vector Modulation Methods

  • Zhu, Chong;Zeng, Zhiyong;Zhao, Rongxiang
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2258-2271
    • /
    • 2016
  • In this paper, some crucial performance characteristics related to the operational reliability of the post-fault Pulse Width Modulated (PWM) rectifiers, such as line current harmonic distortion, Common Mode Voltage (CMV), and current stress on the capacitors, are fully investigated. The aforementioned performance characteristics of post-fault rectifiers are highly dependent on the utilized space vector modulation (SVM) schemes, which are also examined. Detailed analyses of the three most commonly used SVM schemes for post-fault PWM rectifiers are provided, revealing the major differences in terms of the zero vector synthesis approaches. To compare the performances of the three SVM schemes, the operating principles of a post-fault rectifier are presented with various SVM schemes. Using analytical and numerical methods in the time domain, the performances of the line current distortion, common mode voltage and capacitor current are evaluated and compared for each SVM scheme. The proposed analysis demonstrates that the zero vector synthesis approaches of the considered methods have significant impacts on the performance characteristics of rectifiers. In addition, the advantages and disadvantages of the proposed SVM schemes are discussed. The experimental results verify the effectiveness and validity of the proposed analysis.

Current Limit Strategy of Voltage Controller of Delta-Connected H-Bridge STATCOM under Unbalanced Voltage Drop

  • Son, Gum Tae;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.550-558
    • /
    • 2018
  • This paper presents the current limit strategy of voltage controller of delta-connected H-bridge static synchronous compensator (STATCOM) under an unbalanced voltage fault event. When phase to ground fault happens, the feasibility to heighten the magnitude of sagging phase voltage is considered by using symmetric transformation method in delta-structure STATCOM. And the efficiency to cover the maximum physical current limit of switching device is considered by using vector analysis method that calculate the zero sequence current for balancing the cluster energy in delta connected H-bridge STATCOM. The result is simple and obvious. Only positive sequence current has to be used to support the unbalanced voltage sag. Although the relationship between combination of the negative sequence voltage with current and zero sequence current is nonlinear, the more negative sequence current is supplying, the larger zero sequence current is required. From the full-model STATCOM system simulation, zero sequence current demand is identified according to a ratio of positive and negative sequence compensating current. When only positive sequence current support voltage sag, the least zero sequence current is needed.

전압제어 유도 전동기를 위한 최적 PWM 스위칭 방법 (An Optimized PWM Switching Strategy for an Induction Motor Voltage Control)

  • 한상수;추순남
    • 한국정보통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.922-930
    • /
    • 2009
  • 유도 전동기를 전압 제어하기 위한 최적 PWM 스위칭 방법을 제시하려한다. 전압 인버터의 공간 벡터 변조 방식은 DC-버스 이용을 향상시키고 정류 손실을 감소시키기 때문에 디지털 구현의 경우 특히 선호하는 PWM 방법이다. 유도 전동기 전압 제어를 위한 최적 PWM 스위칭 방법은 제시한 최적 PWM 알고리즘을 사용하여 두 개의 활성 전압 벡터(active voltage vector)와 하나의 영 전압 벡터(zero voltage vector)로 구성하였다. 선택된 스위칭 순차 열은 변조 지수(modulation index)와 운송파(carrier wave) 주기의 함수로 정의 된다. 순차 열은 인버터 스위칭 손실과 전류 리플 값을 기준으로 사용하여 선택된다. 실험 결과 중 저 전력용으로 사용할 경우 스위칭 주파수를 증가시킴에 따라 고조파 왜곡이 감소하고 동특성이 좋아짐을 확인할 수 있었다.

Optimal Voltage Vector Selection Method for Torque Ripple Reduction in the Direct Torque Control of Five-phase Induction Motors

  • Kang, Seong-Yun;Shin, Hye Ung;Park, Sung-Min;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1203-1210
    • /
    • 2017
  • This paper presents an improved switching selection method for the direct torque control (DTC) of five-phase induction motors (IMs). The proposed method is conducted using optimal switching selection. A five-phase inverter has 32 voltage vectors which are divided into 30 nonzero voltage vectors and two zero voltage vectors. The magnitudes of the voltage vectors consist of large, medium, and small voltage vectors. In addition, these vectors are related to the torque response and torque ripple. When a large voltage vector is selected in a drive system, the torque response time decreases with an increased torque ripple. On the other hand, when a small voltage vector is selected, the torque response time and torque ripple increase. As a result, this paper proposes an optimal voltage vector selection method for improved DTC of a five-phase induction machine depending on the situation. Simulation and experimental results verify the effectiveness of the proposed control algorithm.

An Inductance Voltage Vector Control Strategy and Stability Study Based on Proportional Resonant Regulators under the Stationary αβ Frame for PWM Converters

  • Sun, Qiang;Wei, Kexin;Gao, Chenghai;Wang, Shasha;Liang, Bin
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1110-1121
    • /
    • 2016
  • The mathematical model of a three phase PWM converter under the stationary αβ reference frame is deduced and constructed based on a Proportional-Resonant (PR) regulator, which can replace trigonometric function calculation, Park transformation, real-time detection of a Phase Locked Loop and feed-forward decoupling with the proposed accurate calculation of the inductance voltage vector. To avoid the parallel resonance of the LCL topology, the active damping method of the proportional capacitor-current feedback is employed. As to current vector error elimination, an optimized PR controller of the inner current loop is proposed with the zero-pole matching (ZPM) and cancellation method to configure the regulator. The impacts on system's characteristics and stability margin caused by the PR controller and control parameter variations in the inner-current loop are analyzed, and the correlations among active damping feedback coefficient, sampling and transport delay, and system robustness have been established. An equivalent model of the inner current loop is studied via the pole-zero locus along with the pole placement method and frequency response characteristics. Then, the parameter values of the control system are chosen according to their decisive roles and performance indicators. Finally, simulation and experimental results obtained while adopting the proposed method illustrated its feasibility and effectiveness, and the inner current loop achieved zero static error tracking with a good dynamic response and steady-state performance.

Model Predictive Control of Circulating Current Suppression in Parallel-Connected Inverter-fed Motor Drive Systems

  • Kang, Shin-Won;Soh, Jae-Hwan;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1241-1250
    • /
    • 2018
  • Parallel three-phase voltage source inverters in a direct connection configuration are widely used to increase system power ratings. A zero-sequence circulating current can be generated according to the switching method; however, the zero-sequence circulating current not only distorts current, but also reduces the system reliability and efficiency. In this paper, a model predictive control scheme is proposed for parallel inverters to drive an interior permanent magnet synchronous motor with zero-sequence circulating current suppression. The voltage vector of the parallel inverters is derived to predict and control the torque and stator flux components. In addition, the zero-sequence circulating current is suppressed by designing the cost function without an additional current sensor and high-impedance inductor. Simulation and experimental results are presented to verify the proposed control scheme.

영상부 3고조파를 이용한 유도전동기의 속도센서없는 벡터제어 (A Speed Sensorless Vector Control Using the Zero Sequence Third Harmonic Voltages)

  • 최정수;유완식;김영석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.388-394
    • /
    • 1998
  • In this paper, we propose a speed sensorless control of the saturated induction motor using the zero sequence third harmonic voltages and a compensation method of the stator resistance variations. The air-gap flux of the saturated induction motor contains the space harmonic components rorating synchronous frequency. As a function of the air-gap flux saturation, the dominant third harmonic voltage is used to compensate the non-linear variations of the mutual inductance depending on the saturation level of the motor. and also the stator resistance variations can be measured with the phase angle between the voltage vector and the zero sequencial voltages. The validity of the proposed compensation scheme in the speed sensorless control using rotor flux observer is verified by simulations.

  • PDF

영상태 벡터를 사용하지 않는 매트릭스 컨버터의 공통모드 전압 저감에 관한 연구 (The Reduction of Common-Mode Voltage in Matrix Converter without Using Zero Space Vector)

  • 윈민항;이홍희;정의헌;전태원;김흥근
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.638-642
    • /
    • 2005
  • This paper proposes a modified space-vector pulse width modulation (PWM) strategy which can restrict the common-mode voltage for three-phase to three-phase matrix converter and still keep sinusoidal input and output waveforms and unity power factor at the input side. The proposed control method has been developed based on contributing the appropriate space vectors instead of using zero space vectors. The advantages of this proposed method is to reduce the peak value of common-mode voltage to 42% beside the lower high harmonic components as compared to the conventional SVM method. Hence, the new table is also presented with the new space vector rearrangement. Furthermore, the voltage transfer ratio is unaffected by the proposed method. A simulation of the overall system has been carried out to validate the advantages of the proposed method.

  • PDF

변조지수에 따른 공통모드 전압 저감 PWM 기법 성능 비교 (Performance Comparison of Common-Mode Voltage Reduction PWM Methods in Terms of Modulation Index)

  • 허건;박용순
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.135-140
    • /
    • 2021
  • This study introduces a new pulse width modulation (PWM) method to reduce common-mode voltages (CMVs) and then compares its performance with other reduced CMV-PWM (RCMV-PWM) methods. CMVs should be reduced to ensure the electromagnetic compatibility and safety of grid-connected inverters. RCMV-PWM methods attempt to synthesize voltage references without zero vectors, which cause high CMV peaks. In these methods, the peak-to-peak magnitude of CMVs can be reduced by one-third of the conventional space-vector PWM. The introduced method splits every reference vector into two vectors to avoid the use of zero vectors. The performances of the RCMV-PWM methods are analyzed in accordance with the modulation index through simulation and experiment.

Optimized PWM Switching Strategy for an Induction Motor Voltage Control

  • Lee, Hae-Hyung;Hwang, Seuk-Yung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.527-533
    • /
    • 1998
  • An optimized PWM switching strategy for an induction motor voltage control is developed and demonstrated. Space vector modulation in voltage source inverter offers improved DC-bus utilization and reduced commutation losses, and has been therefor recognizedas the perfered PWM method, especially in the case of digital implementation. Three-phase invertor voltage control by space vector modulation consists of switching between the two active and one zero voltage vector by using the proposed optimal PWM algorithm. The prefered switching sequence is defined as a function of the modulation index and period of a carrier wave. The sequence is selected by suing the inverter switching losses and the current ripple as the criteria. For low and medium power application, the experimental results indicate that good dynamic response and reduced harmonic distortion can be achieved by increasing switching frequency.

  • PDF