• Title/Summary/Keyword: Zero valent iron

Search Result 137, Processing Time 0.023 seconds

Leaching Characteristics on Arsenic Contaminated Soils after Stabilization Treatment (안정화 처리된 비소오염토양의 용출특성)

  • Yu, Chan;Park, Jin-Chul;Yoon, Sung-Wook;Baek, Seungh-Wan;Lee, Jung-Hun;Lim, Young-Cheol;Choi, Seung-Jin;Jang, Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.920-925
    • /
    • 2008
  • In this presentation, a leaching experiment which is followed the pH changes(pH=4, pH=7) and the mixing rates(1%, 3%, 5%, 7%) was carried out to examine the arsenic reduction effects and the leaching characteristics on arsenic contaminated soil after stabilization treatment in which 5 materials were used as stabilization agencies, i.e. ZVI(zero valent iron), blast furnace slag, steel refining slag, quick lime, and oyster shell meal. Except for blast furnace slag, the arsenic removal rate increased as the mixing rate increases of stabilization agencies. Arsenic leaching concentration was indicated that pH=7 condition is higher than pH=4 condition. This result shows because arsenic immobilization reaction increases as pH decreases, and arsenic adsorption takes place as pH decreases.

  • PDF

The Production of Metal-biochar through Co-pyrolysis of Lignin and Red Mud and Utilization for the Removal of Contaminants in the Water (리그닌과 적니의 공동 열분해를 통한 금속-바이오차 생산 및 수중 오염물질 제거를 위한 활용)

  • Kim Eunji;Kim Naeun;Park Juyeong;Lee Heuiyun;Yoon Kwangsuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • With industrial development, the inevitable increase in both organic and inorganic waste necessitates the exploration of waste treatment and utilization methods. This study focuses on co-pyrolyzing lignin and red mud to generate metalbiochar, aiming to demonstrate their potential as effective adsorbents for water pollutant removal. Thermogravimetric analysis revealed mass loss of lignin below 660℃, with additional mass loss occurring (>660℃) due to the phase change of metals (i.e., Fe) in red mud. Characterization of the metal-biochar indicated porous structure embedded with zero-valent iron/magnetite and specific functional groups. The adsorption experiments with 2,4-dichlorophenol and Cd(II) revealed the removal efficiency of the two pollutants reached its maximum at the initial pH of 2.8. These findings suggest that copyrolysis of lignin and red mud can transform waste into valuable materials, serving as effective adsorbents for diverse water pollutants.

The Pathway and Characteristics for Decomposition of Fenitrothion by Zerovalent Iron (ZVI) (영가철에 의한 Fenitrothion의 분해 경로 및 특성)

  • Lee, Dong-Yoon;Moon, Byung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.157-161
    • /
    • 2011
  • This study investigated decomposition the pathway and characteristics of fenitrothion, which is applied on the golf course for pesticide, by ZVI in batch reactor. The removal efficiencies of the pure fenitrothion and the commercial fenitrothion in Smithion by ZVI were compared. The fenitrothion was converted to 3-Methyl-4-nitrophenol and 4-Amino-m-cresol by ZVI. The fenitrothion decomposition rate by ZVI could be expressed by the first order reaction. As increasing the ZVI dosages, the first order rate constants and removal efficiencies increased. The surface area normalized rate constants for the pure fenitrothion and the commercial fenitrothion were 0.0398 and 0.1312 ($L/m^2{\cdot}hr$), respectively. The decomposition of the commercial fenitrothion in Smithion was faster than that of the pure fenitrothion by ZVI, the surfactant in Smithion lead to enhances solubility of fenitrothion and disperse ZVI.

Investigation of Stabilization Effect on Arsenic Contamination Soils using Zerovalent Iron and Industrial by-products (영가철 및 산업폐기물을 활용한 비소오염토양의 안정화 효과조사)

  • Yu, Chan;Yun, Sung-Wook;Baek, Seung-Hwan;Park, Jin-Chul;Lee, Jung-Hoon;Lim, Young-Cheol;Choi, Seung-Jin;Jang, Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.229-241
    • /
    • 2008
  • In order to investigate stabilization effect on As-contaminated soils treated by zero-valent iron(ZVI) and industrial by-products, batch tests and column tests were carried out with As-contaminated soils collected from farmland around the abandoned mine site. In batch tests, ZVI and industrial by-products(blast furnace slag, steel refining slag and oyster shell powder) were used as treatment materials to reduce As. Industrial by-products were mixed with As-contaminated soils, in the ratio of 1%, 3%, 5% and 7% on the weight base of dried soil. After incubation, all samples showed the reduction of As concentration and it was expected that ZVI and steel refining slag were effective treatment materials to remove As among treatment materials used in batch test. In column tests, columns were made by acrylic with the dimension of diameter=10cm, height=100cm, thickness=1cm and these columns were filled with untreated soils and treated soils mixed with ZVI and steel refining slag(mixing ratio=3%). Distilled water was discharged into the columns with the velocity of 1 pore-volume/day. During test, pH, EC, Eh and As concentration were measured in the regular term(1 pore-volume). As a result, ZVI and steel refining slag were shown 93%, 62% reduction of As concentration respectively by comparison with untreated soils. Therefore, if ZVI and steel refining slag are used as treatment materials in As-contaminated soils, it is expected that the As concentration in soils is reduced effectively.

  • PDF

Removal of COD and T-N caused by ETA from Nuclear Power Plant Wastewater using 3D Packed Bed Bipolar Electrode System (3D 복극충진전기분해를 이용한 원전 ETA에 의해 유발된 폐수 내 COD 및 T-N 제거)

  • Kim, Han-Ki;Jeong, Joo-Young;Shin, Ja-Won;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.409-421
    • /
    • 2012
  • Ethanolamine (ETA) is mainly used to prevent corrosion of pipe in secondary cooling system of nuclear power plant. Condensed ETA in wastewater could increase COD and T-N when it was emitted to natural water system. Compared to conventional treatments, electrochemical oxidation process using packed bed bipolar electrodes was adopted to treat COD and T-N. According to arrangement of feeder electrode, single packed bed bipolar electrode reactor and multi-paired packed bed bipolar reactor were developed and conventional zero-valent iron (ZVI) was selected as conducting bipolar electrode. Bipolar electrodes were coordinated three-dimensionally in the reactor. The experimental results showed that COD and T-N was little removed in unit system at different pH condition (pH 8 and 11) on 100V. However, in multi-paired system that applied 600V, COD was eliminated 80.85% (anode-cathode-anode, A-C-A) and 85.11% (cathode-anode-cathode, C-A-C), respectively. T-N was also removed 96.88% (A-C-A) and 90.63% (C-A-C), simultaneously. Current efficiency was estimated both single and multi-paired system. At unit bipolar packed bed reactor, current efficiency was almost zero, however in multi-paired system, current efficiency was 300~500% at A-C-A and 250~350% at C-A-C. Current efficiency was over 100% hence it was confirmed that this system is more effective than conventional electrochemical oxidation system.

The Study on the Change of Iron Concentration and the Reaction Mechanism of the 1,4-Dioxane Degradation using Zero Valent Iron and UV (영가철(Fe$^0$)과 UV를 이용한 1,4-dioxane 분해 반응시 철농도의 변화와 반응 메커니즘의 연구)

  • Son, Hyun-Seok;Im, Jong-Kwon;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.323-330
    • /
    • 2008
  • The study presents the results of 1,4-dioxane degradation using zero valent (Fe$^0$) or Fe$^{2+}$ ions with and without UV. During the reaction, the change of [Fe$^{2+}$] and [Fe$^{2+}$]/[Fe(t)], the concentration ratio of ferrous ion to total iron ion in solution was measured. Less than 10% degradation of 1,4-dioxane was observed by UV-only, Fe$^0$-only, and Fe$^{2+}$-only conditions, and also the changes of [Fe$^{2+}$] and [Fe$^{2+}$]/[Fe(t)] were minimal in each reaction. However, the oxidation of Fe$^0$ was enhanced with the irradiation of UV by approximately 25% and the improvement of 1,4-dioxane degradation was observed. Fenton reaction ($Fe^{2+}+H_2O_2$) showed higher degradation efficiency of 1,4-dioxane until 90 min, which of the degradation was stopped after that time. In the reaction of Fe$^{2+}$ and UV, the ratio of [Fe$^{2+}$]/[Fe(t)] decreased then slowly increased after a certain time indicating the reduction of Fe3+ to Fe$^{2+}$. In case of Fe$^0$ in the presence of UV, the first-order rate constant was found to be 1.84$\times$10$^{-3}$ min$^{-1}$ until 90 min, and then changed to 9.33$\times$10$^{-3}$ min$^{-1}$ when the oxidation of Fe$^{2+}$ mainly occurred. In this case [Fe$^{2+}$]/[Fe(t)] kept decreasing for the reaction. However, the addition of perchlortae (ClO$_4^-$) in the reaction of Fe$^0$ and UV induced the continuous increase of [Fe$^{2+}$]/[Fe(t)] ratio. The results mean the primary degradation factor of 1,4-dioxane is the oxidation by the radicals generated from the redox reaction between Fe$^{2+}$ and Fe$^{3+}$. Also, both UV and ClO$_4^-$ played the role inducing the reduction of Fe$^{3+}$, which is important to degrade 1,4-dioxane by enhancing the generation of radicals.

Transformation Characteristics of Chlorinated Aliphatic Hydrocarbon (CAH) Mixtures by Natural Ores (자연광석을 이용한 염소계 지방족 탄화수소 혼합물 변환 특성)

  • Son, Bong-han;Kim, Nam-hee;Hong, Kwang-pyo;Yun, Jun-ki;Lee, Chae-young;Kim, Young;Kwon, Soo-youl
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.712-722
    • /
    • 2007
  • This study screened three natural ores (iron, mangenase, and zinc), two types of slags, and two elemental metals (elemental iron and zinc) to evaluate transformation characteristics of CAH mixtures [e.g. Carbontetrachloride (CT), 1,1,1-Trichloroethane (1,1,1-TCA), and Perchloroethene (PCE)]. To select an effective metal medium to treat the CAH mixtures, we measured transformation capacities (CAH mass ultimately transformed/mass of metal added) and the degree of dechlorination. We also considered economical efficiency of the metal media by comparing the value, CAH mass ultimately transformed divided by the price of metal medium added. A simplified mathematical model adapting CAH transformation capacity, first-order transformation kinetics, and available mass of metal transforming CAH was developed and used for estimating CAH transformation rate coefficient and longevity of the metal medium. CAH transformation capacity for elemental iron and elemental zinc were 4258~7129 and $4215{\sim}6330{\mu}g\;CAH\;transformed/g$ metal added, respectively, which are a factor of 80~200 higher than slags and natural ores. They also showed a factor of 1.1 to 2.2 greater degree of dechlorination than the others. Among natural ores and slags, Zinc ore showed the highest transformation capacity, $47{\sim}53{\mu}g\;CAH\;transformed/g$ metal added. Although zinc ore have smaller transformation capacity than elemental metals, economical efficiency of zinc ore is a factor of 10~20 greater than elemental metals tested. Consequently, zinc ore would be more economical medium than the others tested in this study. We estimated the pseudo first-order transformation rate of zinc ore was in the order of CT > 1,1,1-TCA > PCE.

CAH degradation characteristics under mixed conditions (혼합조건에서의 CAH 화합물 분해 특성에 관한 연구)

  • 김종호;배우근;심호재;신언빈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.214-217
    • /
    • 2001
  • 자연계에서는 오염물질이 단일물질로 존재하기보다는 혼합물로 존재하는 것이 대부분이다. 본 연구에서는 지하수 오염물질 chlorinated aliphatic hydrocarbon(CAH)들 중 trichloroethylene(TCE), vinyl chloride(VC)에 대해서 Fe$^{\circ}$와 함께 미생물, 활성탄을 이용하여 단일물질 및 혼합물질상태에서 그 분해특성을 살펴보았다. 실험은 120$m\ell$ serum bottle을 이용하여 단일물질 및 혼합물질상태에서 그 분해특성을 살펴보았다. 실험은 120$m\ell$ serum bottle을 이용하였고 headspace 50${\mu}\ell$를 GC에 주입하여 각 오염물질 농도를 분석하였으며, Fe$^{\circ}$, Fe$^{\circ}$+ cell, Fe$^{\circ}$+ 활성탄 3가지 조건에서 TCE (25${\mu}\ell$)가 단일화합물 또는 VC(10$\mu\textrm{m}$)와 혼합화학물로 존재시 분해특성을 조사하였다. 단일화합물로 존재시 2시간후 TCE농도 측정 결과 Fe$^{\circ}$만을 이용하였을 때보다 활성탄, Cell을 함께 이용하였을 경우 그 분해율이 각각 1.6배, 1.8배 높게 나타났다. 그러나, VC와 혼화합물로 존재시 TCE 분해율은 단일 화합물로 존재시와 비교 Fe$^{\circ}$, Fe$^{\circ}$+ 활성탄, Fe$^{\circ}$+ cell 조건에서 각각 63%, 28%, 5%로 나타났다. VC는 Fe$^{\circ}$만으로는 분해가 되지 않았지만 cell에 의해 완전분해 되었으며, 함께 존재시 TC는 Fe$^{\circ}$만으로는 분해가 되지 않았지만 cell에 의해 완전분해 되었으며, 함께 존재시 TCE분해에 저해작용을 미치는 것으로 나타났다.

  • PDF

Treatment Technologies for Removal of Polybrominated Diphenyl Ethers (PBDEs) from Wastewater (하·폐수내 브롬화 디페닐 에테르(Polybrominated Diphenyl Ether, PBDEs)의 분포 및 제거기술 동향)

  • Kim, Minhee;Hyun, Seunghun;Lee, Won-Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.754-768
    • /
    • 2017
  • Polybrominated diphenyl ethers (PBDEs) are a group of industrial aromatic organobromine chemicals that have been used since the 1970s as flame retardants in a wide range of consumer products and articles, including plastics, computers, textiles and upholstery. Commercial PBDEs were added to Annex A of the Stockholm Convention as persistent organic pollutants in May 2009. PBDEs are still frequently found in sludge and effluent from wastewater treatment plants, even though commercial PBDEs were prohibited or voluntarily phased out several years ago. Conventional wastewater treatment processes are not designed to effectively remove PBDEs. This indicates that there is an urgent need for new developments and improvements to enhance upon the treatment techniques which are currently available. Several studies have suggested the potential removal and degradation technologies for PBDEs in wastewater. In this study, the concentrations and compositional profiles of PBDE congeners in sludge and effluent are investigated by analyzing the relevant literature data in relation to their usage patterns in commercial products in North America and South Korea. The strengths and weaknesses of the current PBDEs removal techniques (i.e., biodegradation, zero-valent iron, photolysis, sorption, etc.) are discussed critically. In addition, future research direction regarding the treatment and removal of PBDEs from wastewater is also suggested, based on the literature review.

A Study on the Degradation Properties of Aqueous Trinitrotoluene by Palladium Catalyst and Formic Acid (Palladium 촉매와 포름산을 활용한 액상 trinitrotoluene 분해 특성 연구)

  • Jeong, Sangjo;Choi, Hyungjin;Park, Sangjin;Lee, Juneil
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.468-475
    • /
    • 2015
  • Various methods to degrade explosives efficiently in natural soil and water that include trinitrotoluene (TNT) have been studied. In this study, TNT in water was degraded by reduction with palladium (Pd) catalyst impregnated onto alumina (henceforth Pd-Al catalyst) and formic acid. The degradation of TNT was faster when the temperature of water was high, and the initial TNT concentration, pH, and ion concentration in water were low. The amounts of Pd-Al catalyst and formic acid were also important for TNT degradation in water. According to the experimental results, the degradation constant of TNT with unit mass of Pd-Al catalyst was $8.37min^{-1}g^{-1}$. The degradation constant of TNT was higher than the results of previous studies which used zero valent iron. 2,6-diamino-4-nitrotoluene and 2-amino-4,6-dinitrotoluene were detected as by-products of TNT degradation showing that TNT was reduced. The by-products of TNT were also completely degraded after reaction when both Pd-Al catalyst and formic acid existed. Even though there are several challenges of Pd-Al catalyst (e.g., deactivation, poisoning, leaching, etc.), the results of this study show that TNT degradation by Pd-Al catalyst and formic acid is a promising technique to remediate explosive contaminated water and soil.