Transformation Characteristics of Chlorinated Aliphatic Hydrocarbon (CAH) Mixtures by Natural Ores

자연광석을 이용한 염소계 지방족 탄화수소 혼합물 변환 특성

  • Son, Bong-han (Department of Environmental Health, Korea National Open University) ;
  • Kim, Nam-hee (Department of Environmental Engineering, Korea University) ;
  • Hong, Kwang-pyo (Department of Environmental Engineering, Korea University) ;
  • Yun, Jun-ki (Samsung Corporation Reserch Institute of Technology) ;
  • Lee, Chae-young (Department of Civil Engineering, Suwon University) ;
  • Kim, Young (Department of Environmental Engineering, Korea University) ;
  • Kwon, Soo-youl (Department of Environmental Health, Korea National Open University)
  • 손봉한 (한국방송통신대학교 환경보건학과) ;
  • 김남희 (고려대학교 환경시스템공학과) ;
  • 홍광표 (고려대학교 환경시스템공학과) ;
  • 윤준기 (삼성물산 기술연구소) ;
  • 이채영 (수원대학교 토목공학과) ;
  • 김영 (고려대학교 환경시스템공학과) ;
  • 권수열 (한국방송통신대학교 환경보건학과)
  • Received : 2007.08.23
  • Accepted : 2007.09.14
  • Published : 2007.09.30

Abstract

This study screened three natural ores (iron, mangenase, and zinc), two types of slags, and two elemental metals (elemental iron and zinc) to evaluate transformation characteristics of CAH mixtures [e.g. Carbontetrachloride (CT), 1,1,1-Trichloroethane (1,1,1-TCA), and Perchloroethene (PCE)]. To select an effective metal medium to treat the CAH mixtures, we measured transformation capacities (CAH mass ultimately transformed/mass of metal added) and the degree of dechlorination. We also considered economical efficiency of the metal media by comparing the value, CAH mass ultimately transformed divided by the price of metal medium added. A simplified mathematical model adapting CAH transformation capacity, first-order transformation kinetics, and available mass of metal transforming CAH was developed and used for estimating CAH transformation rate coefficient and longevity of the metal medium. CAH transformation capacity for elemental iron and elemental zinc were 4258~7129 and $4215{\sim}6330{\mu}g\;CAH\;transformed/g$ metal added, respectively, which are a factor of 80~200 higher than slags and natural ores. They also showed a factor of 1.1 to 2.2 greater degree of dechlorination than the others. Among natural ores and slags, Zinc ore showed the highest transformation capacity, $47{\sim}53{\mu}g\;CAH\;transformed/g$ metal added. Although zinc ore have smaller transformation capacity than elemental metals, economical efficiency of zinc ore is a factor of 10~20 greater than elemental metals tested. Consequently, zinc ore would be more economical medium than the others tested in this study. We estimated the pseudo first-order transformation rate of zinc ore was in the order of CT > 1,1,1-TCA > PCE.

Keywords

References

  1. 권수열, 최의소, 박후원, 전기로 슬래그를 도로용 골재로 사용하기 위한 연구, 대한토목학회 연구보고서 (1997)
  2. 손봉한, 영가 금속을 이용한 지하수내 고농도 염소계 지방족 화합물의 단일 또는 혼합 시 제거 특성, 석사학위논문, 고려대학교 (2007)
  3. 환경부, 2003년 지하수수질측정망 운영결과 보고 (2004)
  4. Agrawal, A., Ferguson, W. J., Gardner, B.O., Christ, J. A., Bandstra, J. Z. and Tratnyek, P. G., Effects of Carbonate Species on the Kinetics of Dechlorination of 1,1,1-Trichloroethane by Zero-Valent Iron, Environ. Sci. Technol., 36, pp. 4326-4333 (2002) https://doi.org/10.1021/es025562s
  5. Allen-King, R. M., Halket, R. M. and Burris, D. R., Reductive Transformation and Sorption of cis- And trans-1,2-Dichlo-roethene in a Metallic Iron-Water System, Environmental Toxicology and Chemistry, 16(3), pp. 424-429 (1997) https://doi.org/10.1897/1551-5028(1997)016<0424:RTASOC>2.3.CO;2
  6. Archer, W. L. and Simpson, E. L., Chemical Profile of Polychloroethanes and Polychloroalkenes, Ind. Eng. Chem., Prod. Res. Dev., 16(2) pp. 158-162 (1977) https://doi.org/10.1021/i360062a010
  7. Arnold, W. A. and Roberts, A. L., Pathways of Chlorinated Ethylene and Ahlorinated Acetylene Reaction with Zn(O), Environ. Sci. Technol., 32, pp. 3017-3025 (1998) https://doi.org/10.1021/es980252o
  8. Arnold, W. A. and Roberts, A. L., Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles, Environ. Sci. Technol., 34, pp. 1794-1805 (2000) https://doi.org/10.1021/es990884q
  9. Arnold, W. A., Ball, W. P. and Roberts, A. L., Polychlorinated Ethane Reaction with Zero-Valent Zinc: Pathways and Rate Control, Journal of Contaminant Hydrology, 40, pp. 183-200 (1999) https://doi.org/10.1016/S0169-7722(99)00045-5
  10. Boronina, T. and Klabunde, K. J., Destruction of Organohalides in Water Using Metal Particles: Carbon Tetrachloride/ Water Reactions with Magnesium, Tin and Zinc, Environ. Sci. Technol., 29, pp. 1511-1517 (1995)
  11. Burris, D. R., Campbell, T. J. and Manoranjan, V. S., Sorption of Trichloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System, Environ. Sci. Technol., 29, pp. 2850-2855 (1995) https://doi.org/10.1021/es00011a022
  12. Chen, J. L., Al-Abed, S. R., Ryan, J. A. and Li, Z., Effects of pH on Dechlorination of Trichloroethylene by Zero-Valent Iron, Journal of Hazardous Materials, B83, pp. 243-254 (2001)
  13. Farrell, J., Kason, M., Melitas, N. and Li, T., Electrochemical and Column Investigation of Iron-Mediated Reductive Dechlorination of Trichloroethylene and Perchloroethylene, Environ. sci. Technol., 34, pp. 2549-2556 (2000a) https://doi.org/10.1021/es991135b
  14. Farrell, J., Kason, M., Melitas, N. and Li, T., Investigation of the Long-Term Performance of Zero-Valent Iron for Reductive Dechlorination of Trichloroethylene, Environ. Sci. Technol., 34, pp. 514-521 (2000b) https://doi.org/10.1021/es990716y
  15. Gaspar, D. J., Lea, A. S., Engelhard, M. H. and Bae, D. R., Evidence for Localization of Reaction upon Reduction of CCI4 by Granular Iron, Langmuir, 18, pp. 7688-7693 (2002) https://doi.org/10.1021/la025798+
  16. Haggblom, M. M. and Bossert, I. D., DEHALOGENATlON, Microbial processes and environmental applications, Kluwer academic publication (2003)
  17. Janda, V., Vasek, P., Bizova, J. and Belohlav, Z., Kinetic models for Volatile chlorinated Hydrocarbons Removal by Zero-Valent Iron, Chemosphere, 54, pp. 917-925 (2004) https://doi.org/10.1016/j.chemosphere.2003.08.033
  18. Johnson, T, L., Fish, W., Gorby, Y. A. and Tratnyek, P. G., Degradation of Carbon Tetrachloride by Iron Metal: Complexation effects on the Oxide Surface, Journal of Contaminant Hydrology, 29, pp. 379-398 (1998) https://doi.org/10.1016/S0169-7722(97)00063-6
  19. Johnson, T. L., Scherer, M. M. and Tratnyek, P. G., Kinetics of Halogenated Organic Compound Degradation by Iron Metal, Environ. Sci. Technol., 30, pp. 2634-2640 (1996) https://doi.org/10.1021/es9600901
  20. Matheson, L. J. and Tratnyek, P. G., Reductive Dehalogenation of Chlorinated Methanes by Iron Metal, Environ. Sci. Technol., 28, pp. 2045-2053 (1994) https://doi.org/10.1021/es00061a012
  21. Miehr, R., Tratnyek, P. G., Bandstra, J. Z., Scherer, M. M., Alowitz, M. J. and Bylaska, E. J., Diversity of Contaminant Reduction Reaction by Zerovalent Iron: Role of the Reductate, Environ. Sci. Technol., 38, pp. 139-147 (2004) https://doi.org/10.1021/es034237h
  22. Orth, W. S. and Gillham, R. W., Dechlorination of Trichloroethene in Aqueous Solution Using $Fe^{\circ}$, Environ. Sci. Technol., 30, pp. 66-71 (1996) https://doi.org/10.1021/es950053u
  23. Scherer, M. M., Johnson, K. M., Westall, J. C. and Tratnyek, P. G., Mass Transport Effects on the Kinetics of Nitrobenzene Reduction by Iron Metal, Environ. Sci. Technol., 35, pp. 2804-2811 (2001) https://doi.org/10.1021/es0016856
  24. Scherer, M. M., Westall, .J. C, Ziomek-Moroz, M. and Tratnyek, P. G., Kinetics of Carbon Tetrachloride Reduction at Oxide-Free Iron Electrode, Environ. Sci. Technol., 31, pp. 2385-2391 (1997) https://doi.org/10.1021/es960999j
  25. Taylor, J. R., An Introduction to Error Analysis, The Study of Uncertainties if Physical Measurements University Science Books5 (1982)
  26. Tratnyek, P. G., Scherer M. M., Deng, B. and Hu, S., Effects of Natural Organic Matter, Anthropogenic Surfactants and Model Quinones on the Reduction of Contaminants by Zero- Valent Iron, Wat. Res., 35, pp. 4435-4443 (2001) https://doi.org/10.1016/S0043-1354(01)00165-8
  27. US EPA, National water Quality Inventory, Report to Congress (1998)
  28. WHO, Guidelines for Drinking Water Quality (1993)