• 제목/요약/키워드: Zero Valent Iron

검색결과 137건 처리시간 0.032초

안정화 처리된 비소오염토양의 용출특성 (Leaching Characteristics on Arsenic Contaminated Soils after Stabilization Treatment)

  • 유찬;박진철;윤성욱;백승환;이정훈;임영철;최승진;장민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.920-925
    • /
    • 2008
  • In this presentation, a leaching experiment which is followed the pH changes(pH=4, pH=7) and the mixing rates(1%, 3%, 5%, 7%) was carried out to examine the arsenic reduction effects and the leaching characteristics on arsenic contaminated soil after stabilization treatment in which 5 materials were used as stabilization agencies, i.e. ZVI(zero valent iron), blast furnace slag, steel refining slag, quick lime, and oyster shell meal. Except for blast furnace slag, the arsenic removal rate increased as the mixing rate increases of stabilization agencies. Arsenic leaching concentration was indicated that pH=7 condition is higher than pH=4 condition. This result shows because arsenic immobilization reaction increases as pH decreases, and arsenic adsorption takes place as pH decreases.

  • PDF

리그닌과 적니의 공동 열분해를 통한 금속-바이오차 생산 및 수중 오염물질 제거를 위한 활용 (The Production of Metal-biochar through Co-pyrolysis of Lignin and Red Mud and Utilization for the Removal of Contaminants in the Water)

  • 김은지;김나은;박주영;이희연;윤광석
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제29권2호
    • /
    • pp.1-10
    • /
    • 2024
  • With industrial development, the inevitable increase in both organic and inorganic waste necessitates the exploration of waste treatment and utilization methods. This study focuses on co-pyrolyzing lignin and red mud to generate metalbiochar, aiming to demonstrate their potential as effective adsorbents for water pollutant removal. Thermogravimetric analysis revealed mass loss of lignin below 660℃, with additional mass loss occurring (>660℃) due to the phase change of metals (i.e., Fe) in red mud. Characterization of the metal-biochar indicated porous structure embedded with zero-valent iron/magnetite and specific functional groups. The adsorption experiments with 2,4-dichlorophenol and Cd(II) revealed the removal efficiency of the two pollutants reached its maximum at the initial pH of 2.8. These findings suggest that copyrolysis of lignin and red mud can transform waste into valuable materials, serving as effective adsorbents for diverse water pollutants.

영가철에 의한 Fenitrothion의 분해 경로 및 특성 (The Pathway and Characteristics for Decomposition of Fenitrothion by Zerovalent Iron (ZVI))

  • 이동윤;문병현
    • 대한환경공학회지
    • /
    • 제33권3호
    • /
    • pp.157-161
    • /
    • 2011
  • 본 연구에서는 골프장 등에서 살충제로 사용하는 대표적인 농약 중 fenitrothion에 대해 ZVI를 사용하여 분해경로를 파악하고 분해특성을 회분식 반응기를 이용하여 연구하였다. 또한 ZVI에 의한 순수 fenitrothion과 스미치온에 함유되어 있는 fenitrothion 분해율을 비교하였다. ZVI에 의한 fenitrothion의 분해 과정에서 3-methyl-4-nitrophenol과 4-amino-m-cresol이 생성되는 것을 알 수 있었다. ZVI에 의한 순수 fenitrothion 및 스미치온에 함유된 fenitrothion의 분해반응은 1차 반응으로 나타낼 수 있으며, 주입농도가 증가 할수록 분해율 및 1차반응 속도상수 값도 증가하였다. 순수 및 스미치온에 함유된 fenitrothion의 비표면적 1차 속도상수 값은 각각 0.0398 및 $0.1312L/m^2{\cdot}hr$으로 스미치온에 함유된 fenitrothion이 순수 fenitrothion에 비해 ZVI에 빨리 분해되었다. 이는 스미치온에 함유된 계면활성제가 fenitrothion의 용해도를 증가시키며 ZVI의 분산력을 향상시킨 것에 기인하는 것으로 판단된다.

영가철 및 산업폐기물을 활용한 비소오염토양의 안정화 효과조사 (Investigation of Stabilization Effect on Arsenic Contamination Soils using Zerovalent Iron and Industrial by-products)

  • 유찬;윤성욱;백승환;박진철;이정훈;임영철;최승진;장민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.229-241
    • /
    • 2008
  • In order to investigate stabilization effect on As-contaminated soils treated by zero-valent iron(ZVI) and industrial by-products, batch tests and column tests were carried out with As-contaminated soils collected from farmland around the abandoned mine site. In batch tests, ZVI and industrial by-products(blast furnace slag, steel refining slag and oyster shell powder) were used as treatment materials to reduce As. Industrial by-products were mixed with As-contaminated soils, in the ratio of 1%, 3%, 5% and 7% on the weight base of dried soil. After incubation, all samples showed the reduction of As concentration and it was expected that ZVI and steel refining slag were effective treatment materials to remove As among treatment materials used in batch test. In column tests, columns were made by acrylic with the dimension of diameter=10cm, height=100cm, thickness=1cm and these columns were filled with untreated soils and treated soils mixed with ZVI and steel refining slag(mixing ratio=3%). Distilled water was discharged into the columns with the velocity of 1 pore-volume/day. During test, pH, EC, Eh and As concentration were measured in the regular term(1 pore-volume). As a result, ZVI and steel refining slag were shown 93%, 62% reduction of As concentration respectively by comparison with untreated soils. Therefore, if ZVI and steel refining slag are used as treatment materials in As-contaminated soils, it is expected that the As concentration in soils is reduced effectively.

  • PDF

3D 복극충진전기분해를 이용한 원전 ETA에 의해 유발된 폐수 내 COD 및 T-N 제거 (Removal of COD and T-N caused by ETA from Nuclear Power Plant Wastewater using 3D Packed Bed Bipolar Electrode System)

  • 김한기;정주영;신자원;박주양
    • 상하수도학회지
    • /
    • 제26권3호
    • /
    • pp.409-421
    • /
    • 2012
  • Ethanolamine (ETA) is mainly used to prevent corrosion of pipe in secondary cooling system of nuclear power plant. Condensed ETA in wastewater could increase COD and T-N when it was emitted to natural water system. Compared to conventional treatments, electrochemical oxidation process using packed bed bipolar electrodes was adopted to treat COD and T-N. According to arrangement of feeder electrode, single packed bed bipolar electrode reactor and multi-paired packed bed bipolar reactor were developed and conventional zero-valent iron (ZVI) was selected as conducting bipolar electrode. Bipolar electrodes were coordinated three-dimensionally in the reactor. The experimental results showed that COD and T-N was little removed in unit system at different pH condition (pH 8 and 11) on 100V. However, in multi-paired system that applied 600V, COD was eliminated 80.85% (anode-cathode-anode, A-C-A) and 85.11% (cathode-anode-cathode, C-A-C), respectively. T-N was also removed 96.88% (A-C-A) and 90.63% (C-A-C), simultaneously. Current efficiency was estimated both single and multi-paired system. At unit bipolar packed bed reactor, current efficiency was almost zero, however in multi-paired system, current efficiency was 300~500% at A-C-A and 250~350% at C-A-C. Current efficiency was over 100% hence it was confirmed that this system is more effective than conventional electrochemical oxidation system.

영가철(Fe$^0$)과 UV를 이용한 1,4-dioxane 분해 반응시 철농도의 변화와 반응 메커니즘의 연구 (The Study on the Change of Iron Concentration and the Reaction Mechanism of the 1,4-Dioxane Degradation using Zero Valent Iron and UV)

  • 손현석;임종권;조경덕
    • 대한환경공학회지
    • /
    • 제30권3호
    • /
    • pp.323-330
    • /
    • 2008
  • 본 논문은 1,4-dioxane의 분해를 위한 Fe$^0$와 Fe$^{2+}$의 반응에서 UV의 영향을 평가하기 위해 반응 중 [Fe$^{2+}$]와 용액 중 총철이온 농도에 대한 [Fe$^{2+}$]의 비([Fe$^{2+}$]/[Fe(t)])의 변화를 조사하였다. UV, Fe$^0$, 그리고 Fe$^{2+}$의 단독반응에 의한 1,4-dioxane의 분해효율은 10% 이하였으며 그 반응 동안 [Fe$^{2+}$]와 [Fe$^{2+}$]/[Fe(t)]의 변화 또한 거의 일어나지 않았다. 그러나 UV 조사에 의해 Fe$^0$의 산화는 약 25% 정도 증가하였을 뿐만 아니라 1,4-dioxane의 분해 효율 또한 개선되었다. Fenton 반응($Fe^{2+}+H_2O_2$)의 경우 반응초기 90분까지는 매우 빠른 분해율을 보인 반면 90분 이후에는 1,4-dioxane의 분해가 거의 정지되었다. Fe$^{2+}$와 UV 반응에서는 [Fe$^{2+}$]/[Fe(t)]가 반응 시작부터 감소하다가 90분 이후부터 완만한 증가를 보였다. Fe$^0$와 UV 반응의 경우 반응속도 상수는 반응시작 90분 동안 1.84$\times$10$^{-3}$ min$^{-1}$에서 Fe$^{2+}$의 변화가 일어나는 시간인 90분 이후 9.33$\times$10$^{-3}$ min$^{-1}$로 큰 상승을 보였고 이 변화는 [Fe$^{2+}$]/[Fe(t)]이 감소이후에 일어났다. [Fe$^{2+}$]/[Fe(t)]는 Fe$^{2+}$와 UV 반응에서 계속적으로 감소하였다. 그러나 그 반응에 ClO$_4^-$를 첨가한 경우 [Fe$^{2+}$]/[Fe(t)]는 완만한 상승을 보였다. 이 결과들은 1,4-dioxane의 분해는 주로 Fe$^0$이 Fe$^{2+}$로 산화되는 기간이 아닌 Fe$^{2+}$가 Fe$^{3+}$로 산화, 환원되는 반응 동안 일어났음을 보여준다. 즉, 1,4-dioxane의 주요 분해는 철순환에서 생성되는 라디칼에 의한 산화작용이라 할 수 있다. 또한 UV와 ClO$_4^-$는 Fe$^{3+}$의 환원에 큰 작용을 하는 것으로 관찰되었고 이는 radical의 지속적인 생산이라는 측면에서 1,4-dioxane의 분해효율을 증가시키기 위해 매우 중요한 부분이라 할 수 있다.

자연광석을 이용한 염소계 지방족 탄화수소 혼합물 변환 특성 (Transformation Characteristics of Chlorinated Aliphatic Hydrocarbon (CAH) Mixtures by Natural Ores)

  • 손봉한;김남희;홍광표;윤준기;이채영;김영;권수열
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.712-722
    • /
    • 2007
  • This study screened three natural ores (iron, mangenase, and zinc), two types of slags, and two elemental metals (elemental iron and zinc) to evaluate transformation characteristics of CAH mixtures [e.g. Carbontetrachloride (CT), 1,1,1-Trichloroethane (1,1,1-TCA), and Perchloroethene (PCE)]. To select an effective metal medium to treat the CAH mixtures, we measured transformation capacities (CAH mass ultimately transformed/mass of metal added) and the degree of dechlorination. We also considered economical efficiency of the metal media by comparing the value, CAH mass ultimately transformed divided by the price of metal medium added. A simplified mathematical model adapting CAH transformation capacity, first-order transformation kinetics, and available mass of metal transforming CAH was developed and used for estimating CAH transformation rate coefficient and longevity of the metal medium. CAH transformation capacity for elemental iron and elemental zinc were 4258~7129 and $4215{\sim}6330{\mu}g\;CAH\;transformed/g$ metal added, respectively, which are a factor of 80~200 higher than slags and natural ores. They also showed a factor of 1.1 to 2.2 greater degree of dechlorination than the others. Among natural ores and slags, Zinc ore showed the highest transformation capacity, $47{\sim}53{\mu}g\;CAH\;transformed/g$ metal added. Although zinc ore have smaller transformation capacity than elemental metals, economical efficiency of zinc ore is a factor of 10~20 greater than elemental metals tested. Consequently, zinc ore would be more economical medium than the others tested in this study. We estimated the pseudo first-order transformation rate of zinc ore was in the order of CT > 1,1,1-TCA > PCE.

혼합조건에서의 CAH 화합물 분해 특성에 관한 연구 (CAH degradation characteristics under mixed conditions)

  • 김종호;배우근;심호재;신언빈
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.214-217
    • /
    • 2001
  • 자연계에서는 오염물질이 단일물질로 존재하기보다는 혼합물로 존재하는 것이 대부분이다. 본 연구에서는 지하수 오염물질 chlorinated aliphatic hydrocarbon(CAH)들 중 trichloroethylene(TCE), vinyl chloride(VC)에 대해서 Fe$^{\circ}$와 함께 미생물, 활성탄을 이용하여 단일물질 및 혼합물질상태에서 그 분해특성을 살펴보았다. 실험은 120$m\ell$ serum bottle을 이용하여 단일물질 및 혼합물질상태에서 그 분해특성을 살펴보았다. 실험은 120$m\ell$ serum bottle을 이용하였고 headspace 50${\mu}\ell$를 GC에 주입하여 각 오염물질 농도를 분석하였으며, Fe$^{\circ}$, Fe$^{\circ}$+ cell, Fe$^{\circ}$+ 활성탄 3가지 조건에서 TCE (25${\mu}\ell$)가 단일화합물 또는 VC(10$\mu\textrm{m}$)와 혼합화학물로 존재시 분해특성을 조사하였다. 단일화합물로 존재시 2시간후 TCE농도 측정 결과 Fe$^{\circ}$만을 이용하였을 때보다 활성탄, Cell을 함께 이용하였을 경우 그 분해율이 각각 1.6배, 1.8배 높게 나타났다. 그러나, VC와 혼화합물로 존재시 TCE 분해율은 단일 화합물로 존재시와 비교 Fe$^{\circ}$, Fe$^{\circ}$+ 활성탄, Fe$^{\circ}$+ cell 조건에서 각각 63%, 28%, 5%로 나타났다. VC는 Fe$^{\circ}$만으로는 분해가 되지 않았지만 cell에 의해 완전분해 되었으며, 함께 존재시 TC는 Fe$^{\circ}$만으로는 분해가 되지 않았지만 cell에 의해 완전분해 되었으며, 함께 존재시 TCE분해에 저해작용을 미치는 것으로 나타났다.

  • PDF

하·폐수내 브롬화 디페닐 에테르(Polybrominated Diphenyl Ether, PBDEs)의 분포 및 제거기술 동향 (Treatment Technologies for Removal of Polybrominated Diphenyl Ethers (PBDEs) from Wastewater)

  • 김민희;현승훈;이원석
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.754-768
    • /
    • 2017
  • Polybrominated diphenyl ethers (PBDEs) are a group of industrial aromatic organobromine chemicals that have been used since the 1970s as flame retardants in a wide range of consumer products and articles, including plastics, computers, textiles and upholstery. Commercial PBDEs were added to Annex A of the Stockholm Convention as persistent organic pollutants in May 2009. PBDEs are still frequently found in sludge and effluent from wastewater treatment plants, even though commercial PBDEs were prohibited or voluntarily phased out several years ago. Conventional wastewater treatment processes are not designed to effectively remove PBDEs. This indicates that there is an urgent need for new developments and improvements to enhance upon the treatment techniques which are currently available. Several studies have suggested the potential removal and degradation technologies for PBDEs in wastewater. In this study, the concentrations and compositional profiles of PBDE congeners in sludge and effluent are investigated by analyzing the relevant literature data in relation to their usage patterns in commercial products in North America and South Korea. The strengths and weaknesses of the current PBDEs removal techniques (i.e., biodegradation, zero-valent iron, photolysis, sorption, etc.) are discussed critically. In addition, future research direction regarding the treatment and removal of PBDEs from wastewater is also suggested, based on the literature review.

Palladium 촉매와 포름산을 활용한 액상 trinitrotoluene 분해 특성 연구 (A Study on the Degradation Properties of Aqueous Trinitrotoluene by Palladium Catalyst and Formic Acid)

  • 정상조;최형진;박상진;이준일
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.468-475
    • /
    • 2015
  • Various methods to degrade explosives efficiently in natural soil and water that include trinitrotoluene (TNT) have been studied. In this study, TNT in water was degraded by reduction with palladium (Pd) catalyst impregnated onto alumina (henceforth Pd-Al catalyst) and formic acid. The degradation of TNT was faster when the temperature of water was high, and the initial TNT concentration, pH, and ion concentration in water were low. The amounts of Pd-Al catalyst and formic acid were also important for TNT degradation in water. According to the experimental results, the degradation constant of TNT with unit mass of Pd-Al catalyst was $8.37min^{-1}g^{-1}$. The degradation constant of TNT was higher than the results of previous studies which used zero valent iron. 2,6-diamino-4-nitrotoluene and 2-amino-4,6-dinitrotoluene were detected as by-products of TNT degradation showing that TNT was reduced. The by-products of TNT were also completely degraded after reaction when both Pd-Al catalyst and formic acid existed. Even though there are several challenges of Pd-Al catalyst (e.g., deactivation, poisoning, leaching, etc.), the results of this study show that TNT degradation by Pd-Al catalyst and formic acid is a promising technique to remediate explosive contaminated water and soil.