• Title/Summary/Keyword: Zero Forcing(ZF)

Search Result 92, Processing Time 0.023 seconds

Zero forcing based sphere decoder for generalized spatial modulation systems

  • Jafarpoor, Sara;Fouladian, Majid;Neinavaie, Mohammad
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.145-159
    • /
    • 2019
  • To reduce the number of radio frequency (RF) chains in multiple input multiple output (MIMO) systems, generalized spatial modulation (GSM) techniques have been proposed in the literature. In this paper, we propose a zero-forcing (ZF)-based detector, which performs an initial pruning of the search tree that will be considered as the initial condition in a sphere decoding (SD) algorithm. The proposed method significantly reduces the computational complexity of GSM systems while achieving a near maximum likelihood (ML) performance. We analyze the performance of the proposed method and provide an analytic performance difference between the proposed method and the ML detector. Simulation results show that the performance of the proposed method is very close to that of the ML detector, while achieving a significant computational complexity reduction in comparison with the conventional SD method, in terms of the number of visited nodes. We also present some simulations to assess the accuracy of our theoretical results.

Performance of Interference Cancellation Scheme for Multihop Military Communication Systems (멀티 홉 군통신 시스템을 위한 간섭 제거 기법 성능 분석)

  • Kim, Yo-Cheol;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.17-22
    • /
    • 2011
  • In this paper, we analyze co-channel interference cancellation performance to be generated in multi-hop military communication system. First, remove interference using zero-forcing (ZF) and minimum mean square error (MMSE) scheme as interference cancellation methods, and then obtain additional diversity gain and improve interference cancellation performance by applying successive interference cancellation (SIC). We consider Rayleigh fading channel and system performance is analyzed as respect of bit error probability. From simulation results, we confirm MMSE improves significantly BER performance than ZF in multi-hop wireless network environment. It is also confirmed ZF and MMSE schemes applying SIC algorithm have better performance comparing to the existing schemes. Therefore, MMSE-SIC method can provide more reliable signal transmission in the multi-hop military communication system.

A Study on the Performance of STC-MIMO System (WiBro STC-MIMO 시스템의 성능 연구)

  • Ahn, Sung-Soo;Cho, Jun-Hwan
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.90-93
    • /
    • 2010
  • This paper shows various perfermance analysis utilizing STC(Space Time Coding) in MIMO mobile communication by WiBro system environments. In this paper, 3 algorithm which are SM method, ML (Maximum Likelihood) and ZF(Zero Forcing) algorithm use for perfermance analysis. From the various simulation result, it is confirm that ZF method is superior compare than STC and ML method.

Optimized BD-ZF Precoder for Multiuser MIMO-VFDM Cognitive Transmission

  • Yao, Rugui;Xu, Juan;Li, Geng;Wang, Ling
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.291-301
    • /
    • 2016
  • In this paper, we study an optimized block-diagonal zero-forcing (BD-ZF) precoder in a two-tiered cognitive network consisting of a macro cell (MC) and a small cell (SC). By exploiting multiuser multiple-input and multiple-output Vandermonde-subspace frequency-division multiplexing (VFDM) transmission, a cognitive SC can coexist with an MC. We first devise a cross-tier precoder based on the idea of VFDM to cancel the interference from the SC to the MC. Then, we propose an optimized BD-ZF intra-tier precoder (ITP) to suppress multiuser interference and maximize the throughput in the SC. In the case where the dimension of a provided null space is larger than that required by the BD-ZF ITP, the optimized BD-ZF ITP can collect all limited channel gain by optimizing rotating and selecting matrices. Otherwise, the optimized BD-ZF ITP is validated to be equivalent to the conventional BD-ZF ITP in terms of throughput. Numerical results are presented to demonstrate the throughput improvement of the proposed optimized BD-ZF ITP and to discover the impact of imperfect channel state information.

Performance Evaluation of Fill Rate Quasi-orthogonal STF-OFDM with DAC-ZF Decoder for Four Transmit Antennas MIMO System (4개의 송신 안테나 MIMO 시스템을 위한 DAC-ZF 수신 기법과 결합된 Full Rate 준직교 QOSTF-OFDM 관한 연구)

  • Jin, Ji-Yu;Ryu, Kwan-Woong;Park, Yong-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1092-1100
    • /
    • 2006
  • In this paper, we propose a full rate quasi-orthogonal space-time-frequency block coded orthogonal frequency division multiplexing(QOSTF-OFDM) that can achieve full symbol rate with four transmit antennas. Sincr: the proposed QOSTF-OFDM can not achieve full diversity, we use diversity advantage collection with zero forcing (DAC-ZF) decoder to compensate the diversity loss at receive side. At the same frequency efficiency, compared with linear orthogonal space-time codes which can not achieve full rate with four transmit antennas over complex constellations, low level modulation can be employed by proposed scheme due to its full rate, i.e., modulation advantage can be achieved. Due to modulation advantage and collected diversify advantage, the proposed scheme exhibits better BER performance than other orthogonal schemes.

Statistical Precoder Design for Spatial Multiplexing Systems in Correlated MIMO Fading Channels (높은 안테나 상관도를 갖는 다중입출력 공간 다중화 시스템을 위한 통계적 프리코딩 기법)

  • Moon, Sung-Hyun;Kim, Jin-Sung;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.223-231
    • /
    • 2011
  • It has been shown that the performance of multiple-input multiple-output (MIMO) spatial multiplexing systems is significantly degraded when spatial correlation exists between transmit and receive antenna pairs. In this paper, we investigate designs of a new statistical precoder for spatial multiplexing systems with maximum likelihood (ML) receiver which requires only correlation statistics at the transmitter. Two kinds of closed-form solution precoders based on rotation and power allocation are proposed by means of maximizing the minimum E tlidean distance of joint symbol constellations. In addition, we extend our results to linear receivers for correlated channels. We provide a method which yields the same profits from the proposed precoders based on a simple zero-forcing (ZF) receiver. The simulation shows that 2dB and 8dB gains are achieved for ML and ZF systems with two transmit antennas, respectively, compared to the conventional systems.

MMSE Based Nonlinear Precoding for Multiuser MIMO Broadcast Channels with Inter-Cell Interference (다중사용자 다중입출력 하향링크 채널에서 인접셀 간섭을 고려한 MMSE 기반 비선형 프리코딩)

  • Lee, Kyoung-Jae;Sung, Hakjea;Lee, Inkyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.896-902
    • /
    • 2016
  • In this paper, we investigate a minimum mean-squared error based nonlinear successive precoding method as a practical solution of dirty paper coding for multiuser downlink channels where each user has more than one antenna in the presence of other cell interference (OCI). Unlike conventional zero-forcing (ZF) based methods, the proposed scheme takes the OCI plus noise into account when suppressing the inter-cell multiuser interference, which results in improvement of the received signal-to-interference-plus-noise ratio. Simulation results show that the proposed scheme outperforms conventional methods in terms of sum rate for various OCI configurations.

A Hybrid Detection Technique for Multiple Input Multiple Output Systems in Fading Environment (감쇄 환경에서 여러 입력 여러 출력 시스템에 알맞은 혼합 검파 방식)

  • Oh Jong-Ho;An Tae-Hun;Song Iick-Ho;Park Ju-Ho;Park So-Ryoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.897-904
    • /
    • 2006
  • Multiple input multiple output architectures, known to provide high spectral efficiencies, can provide the best performance in terms of the block error rate when a maximum likelihood (ML) detector is employed. The complexity of the ML detector, however, increases exponentially with the numbers of transmit antennas and signals in the constellation. The zero forcing (ZF) detector has been suggested as a reduced-complexity detection method at the cost of performance degradation. In order to improve the performance of the ZF detector while reducing the complexity of the ML detector, we propose a novel multistage decision method. Numerical results show that, despite the proposed detector has a lower complexity than the ML detector, the performance difference between the ML and proposed detectors is negligibly small at high SNR.

Performance Improvement of STBC-OFDM System with Advanced Transmit Diversity in Mobile Communications Environment (이동통신 환경에서 개선된 송신 다이버시티를 이용하는 STBC-OFDM 시스템의 성능 개선)

  • 김장욱;양희진;오창헌;조성준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.5
    • /
    • pp.444-450
    • /
    • 2004
  • In mobile communications environment, STBC-OFDM(Space Time Block Code-Orthogonal Frequency Division Multiplexing) system with transmit diversity obtains the MRRC(Maximal Ratio Receiver Combining) diversity gain in time-invariant channel between two received symbols. But in time-variant channel, due to the interference between received symbols, MRRC diversity gain cant be obtained. So, when the mobile device with transmit diversity moves in high speed, the scheme to reduce the performance degradation due to the interference is needed. In this paper, we propose the receiver architecture with advanced transmit diversity, which improves the performance of STBC-OFDM system. The proposed architecture obtains the diversity gain without the change of transmit bandwidth at the receiver with the interference canceller using ZF(Zero Forcing) algorithm. Simulation results show performance improvement as doppler shift is increasing.

Performance Analysis of Multiuser MIMO Systems with Zero Forcing Receivers (Zero Forcing 수신기를 결합한 다중사용자 다중안테나 시스템의 성능 분석)

  • Sung, Chang-Kyung;Moon, Sung-Hyun;Park, Eun-Sung;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.592-599
    • /
    • 2009
  • In this paper, we consider multiuser multi-input/multi-output antenna systems with zero-forcing receivers in downlink. In this case, to exploit multiuser diversity, spatial-division multiple access (SDMA) system allows to assign different users to a part of transmit antennas at the base station whereas spatial-division multiplexing (SDM) system assigns all antennas to single user's data stream. In this paper, we present analytical frameworks to evaluate performance of these systems. We first analyze the performance of these two systems by deriving closed-form expressions of achievable throughput. Numerical results show that the derived expressions are very tight. In addition, we approximate the capacity expression of SDM and SDMA systems and compare the SDM with the optimal case.