• Title/Summary/Keyword: Zero Emission Building

Search Result 14, Processing Time 0.026 seconds

A Study on the Design Process of Zero Emission Buildings (ZEB(Zero Emission Building) 디자인 프로세스에 관한 연구)

  • Kang, Hae-Jin;Kang, Soo-Yeon;Park, Jin-Chul;Rhee, Eon-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.39-45
    • /
    • 2010
  • Zero Emission Building is abuilding which emits virtually '0(zero)' carbon dioxide. Although simple in concept, ZEB requires totally different approach from conventional building in terms of design, engineering, construction and operation. There are few research on ZEB design process as ZEB design requires understanding and knowledge regarding energy and technology. The study aims to propose a design process of Zero Emission Building for architects. The study examined the concept of Zero Emission Building through intensive literature search. The examples of Zero Emission Buildings were investigated, and strategies and technologies applied to the buildings were analyzed. Various conventional design processes were identified and analyzed to examine the applicability to ZEB design, Finally, a new design process which effectively accommodate the requirement of Zero Emission Building was proposed.

Power conversion control for zero emission buildings (탄소제로 빌딩을 위한 전력변환 제어)

  • Han, Seok-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.504-505
    • /
    • 2011
  • Decreasing actual greenhouse gas will be difficult if it is not solved addressed in architectural fields. Zero emission building or zero energy building, maximize the efficiency of energy, which means the building can operate by their own renewable energy facility without any other supplying. To be a zero emission building, a building needs realization of high efficiency low energy consumption, construction of building its own energy production facilities and lastly a power grid connection. According to increasing of DC load about TV, LED lighting, computer, IT in building for living and business, it is expected the save of energy when the system of AC power distribution change into the system of DC power distribution. Renewable energy exists a big different rate produced by outside environment. When electrical power overproduce, it can supply for system. Otherwise, if electrical power produce less, it can receive supply from system. Send and receive power can lead to zero to annual standard. This paper shows the simulation about efficient control of power conversion which is related to DC power distribution of architecture and DC output of renewable energy by using L-type converter.

  • PDF

A Study of Zero Energy Building Verification with Measuring and Model-based Simulation in Exhibition Building

  • Ha, Ju-wan;Park, Kyung-soon;Kim, Hwan-yong;Song, Young-hak
    • Architectural research
    • /
    • v.20 no.3
    • /
    • pp.93-102
    • /
    • 2018
  • With the change in Earth's ecosystems due to climate change, a number of studies on zero energy buildings have been conducted globally, due to the depletion of energy and resources. However, most studies have concentrated on residential and office buildings and the performance predictions were made only in the design phase. This study verifies the zero-energy performance in the operational phase by acquiring and analyzing data after the completion of an exhibition building. This building was a retention building, in which a renewable energy system using a passive house building envelope, solar photovoltaic power generation panels, as well as fuel cells were adopted to minimize the maintenance cost for future energy-zero operations. In addition, the energy performance of the building was predicted through prior simulations, and this was compared with actual measured values to evaluate the energy performance of the actual operational records quantitatively. The energy independence rate during the measurement period of the target building was 123% and the carbon reduction due to the energy production on the site was 408.07 tons. The carbon reduction exceeded the carbon emission (331.5 tons), which verified the carbon zero and zero-energy performances.

A Study on the Optimum Application Method of Solar Thermal System to reduce Thermal Load and Carbon Emission in Apartment Building (공동주택의 열부하 및 탄소배출량 저감을 위한 태양열시스템의 최적 적용 방안 연구)

  • Yoon, Jong-Ho;Sim, Se-Ra;Shin, U-Cheul;Baek, Nam-Chun;Kwak, Hee-Yul
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.135-142
    • /
    • 2011
  • Architectural market in the world is trying to develop Zero Carbon Buildng that doesn"t use fossil fuel. Residential building that thermal load such as heating and domestic hot water is over 70% in energy consumption is easy to make Zero Carbon Building compared with office building that is mainly electric load. So, As a preliminary for analyzing the effect of Solar thermal system in the building, an annual energy consumption of residential building and total heat loads are calculated. Based on this result, three alternatives of solar thermal system for hot water and heating are applied in the building while installation area is increasing. Solar thermal system is applied on balcony and roof of apartment building as the way to reduce thermal load. In the first case that solar thermal system for hot water is applied on the balcony, optimum installation area is $56m^2$. And you could install $40m^2$ of this system in the roof that angle is $30^{\circ}$. In the second case of solar thermal system for heating and hot water, you can install $40m^2$ on the roof. As a result of economic evaluation, the most economical application method is to install $40m^2$ of solar thermal system for only hot water on the roof of the building. At that time, you can payback the initial investing cost within 10 years. And carbon emission of this method can be reduced until about 4 ton per year.

A basic study on the production of an integrated lightweight concrete solar panel using recycled waste resources (폐자원을 재활용한 일체형 경량 콘크리트 태양광패널 제작에 관한 기초적 연구반복)

  • Lee, Kook-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.168-169
    • /
    • 2022
  • The continuous development of science and technology since the Industrial Revolution and the development of human civilization are based on the use of fossil fuels. However, the use of fossil fuels is increasing the greenhouse gas, the main cause of global warming, and global warming is an extreme climate anomaly that is rapidly increasing human and material damage. Therefore, efforts are being made worldwide to return greenhouse gases to pre-industrial levels. In Korea, 2050 carbon neutrality has been set as a major policy and efforts are being made to curb carbon emissions in the overall industry. Carbon emission suppression is based on the minimization of fossil fuel use, and research and development are underway on building a zero-emission house that minimizes the energy used in buildings in the construction field. Therefore, in this study, as part of the zero-emissions water system construction, waste resources generated at industrial sites were utilized and an integrated lightweight concrete solar panel grafted with a concrete lightweight panel and solar panel was manufactured and the possibility of its use was evaluated.

  • PDF

A Study on the Recycling of Waste for Decrease of Environmental Pollution for the Building Construction (건축공사 환경오염저감을 위한 폐기물 재활용에 관한 연구)

  • Suhr, Myong-Suk;Son, Min-Kyu
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.7 no.3
    • /
    • pp.9-18
    • /
    • 2005
  • The environment in which we live is changing at an accelerated rate according to the needs of times, concrete structures are increasing daily responding to this advanced lifestyle as a result of demolition and construction. The production of noise and vibration during demolition work on these concrete structures has a major negative influence on the present environment in which we live. As a result, controls on this form of pollution are being strengthened. The aim of this study is to analyze and investigate zero - emission for decrease of environmental pllution in architecture construction field.

  • PDF

A Comparative Study on Domestic and International Evaluation Criteria of Commissioning for Sustainable Building Certification (국내외 녹색건축인증에서의 커미셔닝 평가기준에 대한 비교 연구)

  • Jeong, Dahun;Jung, Chanwoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.1
    • /
    • pp.27-36
    • /
    • 2017
  • Ministry of Land, Infrastructure and Transport established Heating and cooling energy conservation plan of apartment for 2017, reducing 90% compared to energy consumption of 1990. Also, at 2015 United Nations Climate Change Conference, the Ministry announced to reduce 37% of estimated $CO^2$ emission(850 million ton) at 2030. To satisfy this, it is urgent to reduce $CO^2$ emission due to the building, which takes majority amount of total $CO^2$ emission, and public interest for the commissioning of intensified building performance is uprising. However, the building commissioning at construction is not enacted, and not activated due to the lackness of promotion and will of general contractor. Furthermore, commissioning is not mandatory for obtaining G-SEED certification. Therefore, this paper describes effectiveness of commissioning with comparison of commissioning evaluation criteria of G-SEED with LEED and BREEAM, to propose making commissioning as mandatory process and drive changes in perception among stakeholders for activation of domestic building commissioning.

Evaluation of the Fundamental Properties of Zero-Cement Mortar Using Blast Furnace Slag From Different Areas (산지 별 고로슬래그 미분말 변화에 따른 무시멘트 순환잔골재 모르타르의 기초적 특성 평가)

  • Zhao, Yang;Lee, Hong-Kyu;Kang, Byoung-Hoi;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.210-211
    • /
    • 2014
  • Nowadays, as to reduce the emission volume of CO2, blast furnace slag has been widely used to replacement of cement. Techniques about using industrial by-products has been extensively studied. For the previous study, blast furnace slag has been used with recycled fine aggregates. In thess study, considering about the different properties of blast furnace slag, as the change of blaine and chemical performances of blast furnace slag, the results of flowability and compressive strength has been analysed.

  • PDF

Stepwise Technique for Improving Building Energy Efficiency Rating Utilizing Quantified Simulation Model (정량화 시뮬레이션 모델을 활용한 단계적인 건축물에너지효율등급 향상 방안)

  • Kim, Gi-Seok;Kim, You-Min;Kim, Jong-Seung;Oh, Se-Gyu
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.65-73
    • /
    • 2014
  • Due to the Climate change and resource shortage by global warming, various problems are rising and getting worse around the world. Many countries are doing the considerable efforts to reduce greenhouse gas emissions. The government of South Korea also plans to decrease greenhouse gas emission, the various pilot projects are underway, which includes obligation of energy efficiency 1st rating and greenhouse gas target management system of public buildings. In particular, luxurious government office buildings and energy-wasting public building have issued and emerged as a social problem. Energy efficiency improvement of the existing public office buildings are becoming an important issue recently. This study is proposed the step-by-step energy improvement model according to the building energy efficiency rate in order to reduce the energy consumption. To attain this end, I set up a base model by analyzing the current architectural conditions of the existing public office buildings and grasped the specific properties of building energy consumption through energy simulations. Furthermore, I suggested phased reduction prototypes for the reduction target of energy consumption by applying the methods of the zero energy building plan. This study is expecting that prototypes would give directions when it comes to planning the implementation policy of phased building plan factors, according the building energy consumption reduction goal in the existing public office buildings which are the subject of building energy target management system.

Effects of Incineration Waste Ash and Gypsum Substitution on the Properties of Blast Furnace Slag Mortar using Recycled Aggregate (소각장 애쉬 및 석고치환이 고로슬래그 미분말 기반 순환골재 모르타르의 물성에 미치는 영향)

  • Han, Min Cheol;Han, Dong Yeop;Lu, Liang Liang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • Nowadays, all the world face to the global warming problems due to the emission of $CO_2$. From the previous studies, recycled aggregates were used as an alkali activator in blast furnace slag to achieve zero-cement concrete, and favorable results of obtaining strength were achieved. In this study, gypsum and incineration waste ash were used as the additional alkali activation and effects of the gypsum and incineration waste ash to enhance the performance of the mortar were tested. Results showed that although the replacement ratio of 0.5% of incineration waste ash and 20% of anhydrous gypsum resulted in the low of mortar at the early age, while it improved the later strength and achieved the similar strength to that of conventional mortar (at 91 days).