• Title/Summary/Keyword: Zeolite 5A

Search Result 500, Processing Time 0.037 seconds

Dehydration of Lactic Acid to Bio-acrylic Acid over NaY Zeolites: Effect of Calcium Promotion and KOH Treatment (NaY 제올라이트 촉매 상에서 젖산 탈수반응을 통한 바이오아크릴산 생산: Ca 함침 및 KOH 처리 영향)

  • Jichan, Kim;Sumin, Seo;Jungho, Jae
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • With the recent development of the biological enzymatic reaction industry, lactic acid (LA) can be mass-produced from biomass sources. In particular, a catalytic process that converts LA into acrylic acid (AA) is receiving much attention because AA is used widely in the petrochemical industry as a monomer for superabsorbent polymers (SAP) and as an adhesive for displays. In the LA conversion process, NaY zeolites have been previously shown to be a high-activity catalyst, which improves AA selectivity and long-term stability. However, NaY zeolites suffer from fast deactivation due to severe coking. Therefore, the aim of this study is to modify the acid-base properties of the NaY zeolite to address this shortcoming. First, base promoters, Ca ions, were introduced to the NaY zeolites to tune their acidity and basicity via ion exchange (IE) and incipient wetness impregnation (IWI). The IWI method showed superior catalyst selectivity and stability compared to the IE method, maintaining a high AA yield of approximately 40% during the 16 h reaction. Based on the NH3- and CO2-TPD results, the calcium salts that impregnated into the NaY zeolites were proposed to exit as an oxide form mainly at the exterior surface of NaY and act as additional base sites to promote the dehydration of LA to AA. The NaY zeolites were further treated with KOH before calcium impregnation to reduce the total acidity and improve the dispersion of calcium through the mesopores formed by KOH-induced desilication. However, this KOH treatment did not lead to enhanced AA selectivity. Finally, calcium loading was increased from 1wt% to 5wt% to maximize the amount of base sites. The increased basicity improved the AA selectivity substantially to 65% at 100% conversion while maintaining high activity during a 24 h reaction. Our results suggest that controlling the basicity of the catalyst is key to obtaining high AA selectivity and high catalyst stability.

Quality Characteristics of Cherry Tomato and Unshiu Orange Packaged with Box Incorporated with Antimicrobial Agents (항균소재 함유 박스로 포장한 방울토마토와 밀감의 저장중 품질 특성)

  • Park Woo-Po;Kim Chul-Hwan;Cho Sung-Hwan
    • Food Science and Preservation
    • /
    • v.13 no.3
    • /
    • pp.273-278
    • /
    • 2006
  • In order to help the preservation of the cherry tomato and unshiu orange, antimicrobial paper incorporating grapefruit seed extract and zeolite was applied to the package. Cherry tomato and unshiu orange were packed in a box (38x25x20 cm) attached with antimicrobial paper and then stored respectively at $5^{\circ}C$. During the storage, weight loss, pH total acidity, soluble solid content microbial load and decay ratio were measured as quality indices. pH increase in cherry tomato was observed until 20 days, and decreased with litle difference between the packaging treatments thereafter pH and total acidity decrease in unshiu orange were shown till 30 days, and abrupt change was revealed by 40 days. This was due to physiological disorders. The microbial loads of total aerobic bacteria, and yeast/mold count were suppressed during storage by the box packaging incorporated with antimicrobial agents, which also contributed to reducing the decayed cherry tomato and unshiu orange. Antimicrobial paper was useful fur the reduction of microbial load in cherry tomato and unshiu orange pear without other quality deterioration.

Depth-dependent Variations in Elemental and Mineral Distribution in the Deep Oceanic Floor Sediments (WP21GPC04) near the Mariana Trench in the Western Pacific Ocean (마리아나 해구에 인접한 서태평양 심해평원의 정점 WP21GPC04에서 수집된 해양 퇴적물의 깊이에 따른 원소 및 광물 분포 변화)

  • Junte Heo;Seohee Yun;Jonguk Kim;Young Tak Ko;Yongjae Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.581-588
    • /
    • 2023
  • This study reports depth-dependent elemental distribution and mineral abundance of the oceanic sediment sample (WP21GPC04) near the Mariana Trench collected during the WP21 expedition in 2021. The elemental distribution determined by μ-XRF shows no significant differences with varying depth, with an average SiO2 53.91 wt%, FeO 4.48 wt%, Al2O3 16.56 wt%, MgO 2.56 wt%, CaO 4.79 wt%, Na2O 3.52 wt%, K2O 5.48 wt%, similar to the average chemical composition of global subducting sediments (GLOSS). The mineral abundances analyzed using synchrotron XRD, however, vary with depth. While quartz, mica, and plagioclase were identified at all depths, chlorite was found at shallow depths, and zeolite group minerals, phillipsite and heulandite, showed a gradual change in phase fraction with depth. This suggests a change in sedimentation and alteration environments in the region, or the potential for coexistence emerges due to similar sediment stability. Overall, this study will provide a basis for the future investigations on the evolution of sedimentary environment near the Mariana Trench in the western Pacific Ocean and the phase distribution and the behavior of subducting oceanic sediments, which will affect the lithological and geochemical characteristics of the Mariana susduction system.

Bio-Green' Functional Water Supply Influences Mineral Uptake and Fruit Quality In Tsugaru Apples (‘바이오 그린’ 기능수 처리가 사과 쓰가루 품종의 무기성분 흡수와 과실품질에 미치는 영향)

  • Kim, Wol-Soo;Chung, Soon-Ju
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.71-79
    • /
    • 1997
  • Commercial Bio- Green(B.G.) functional water was manufactured through a series of processes : water - ultra-purification - adding catalysts - energy imprinting fermenting with energized water + zeolite and others + photosynthetic bacteria in fermenter longrightarrow filtering. Control(0), 5 or 10 liters per plant of B.G. functional water were supplied to the orchard soil under canopy of 10 year- old ‘Tsugaru’/M26 apple trees on March 20, May 20 and June 20, 1995, respectively. pH and content of Ca and Mg of orchard soil were increased by supply with B.G. functional water. However, P$_2$ $O_{5}$, K, and B contents were not influenced by the treatment. At harvest time soluble solid content of flesh tissue and anthocyanin of fruit skin were increased by the treatment. B.G functional water treatment showed higher root activities, and photosynthesis of leaves than that of control. Also B.G. functional water treatment enhanced Ca content in fruit skin and flesh tissues, whereas not affected N, K, and Mg contents. During storage at 4$^{\circ}C$ cold room, the more volume of B.G. functional water supply showed lower bitter pit symptom. Respiration and ethylene evolution in fruit decreased, while fruit firmness increased by the treatment during storage.

  • PDF

Hygroscopic Characteristic of Gypsum Boards Using Porous Materials (다공성 원료를 사용한 석고보드의 흡습 특성)

  • Jeong, Eui-Jong;Lee, Jong-Kyu;Cheong, Deock-Soo;Chu, Yong-Sik;Song, Hun
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.538-543
    • /
    • 2009
  • Active clays, Diatomite, bentonite and zeolite were used as porous materials for fabricating hygroscopic gypsum boards. Pohang active clay and Cheolwon diatomite showed excellent characteristics of moisture adsorption and desorption. These characteristics were caused by higher surface area and pore volume of porous materials. Moisture adsorption content of gypsum board with 10% active clay(P1) was 62.0 g/m$^2$, and moisture desorption content was 50.2 g/m$^2$. Moisture adsorption content of gypsum board with 10% diatomite(P) was 59.5 g/m$^2$, and moisture desorption content was 49.0 g/m$^2$. Moisture adsorption contents of gypsum boards with porous materials were higher than that moisture desorption contents of gypsum board without porous materials. Correlation coefficient between surface area and moisture adsorption content of gypsum boards was 0.98. Also, correlation coefficient between surface area and moisture desorption content of gypsum boards was 0.97. Moisture adsorption and desorption contents were influenced by surface area and pore volume of the gypsum boards, and surface area had a larger effect on moisture adsorption and desorption.

Synthesis of Sodalite from Water Glass: Effect of the Composition of Synthetic Mixtures on Its Crystallinity and Crystallite Size (물유리에서 소달라이트의 합성: 합성모액 조성이 결정화도와 입자 크기에 미치는 영향)

  • Bae, Song Eun;Seo, Gon;Song, Mee Kyung;No, Kyoung Tai
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.424-429
    • /
    • 2009
  • The effects of $Na_2O$, $SiO_2$ and $H_2O$ contents of the synthetic mixtures prepared from water glass on the crystallinity and crystallite size of sodalite were studied. The composition of the synthetic mixtures described by $x\;Na_2O{\cdot}y\;SiO_2{\cdot}Al_2O_3{\cdot}z\;H_2O$ was varied within x=2.5~7.5, y=1.4~3.0, z=140~400. The hydrothermal reaction was carried out at $140^{\circ}C$ for 2 days. High content of $Na_2O$ resulted in the high crystallinity and small crystallite of sodalite. The $SiO_2/Al_2O_3$ molar ratios of around 2 were suitable for the synthesis of sodalite, and produced zeolite species were varied by the $H_2O$ content. Sodalite was mainly obtained with a high crystallinity from the synthetic mixtures with $SiO_2/Al_2O_3$ molar ratio of around 2 and high content of $Na_2O$. The high content of sodium ions caused a decrease in the particle sizes because of their role of structure directing agent.

Synthesis and Structural Characterization of Benzene-sorbed Cd2+-Y(FAU) Zeolite (벤젠이 흡착된 Cd2+-Y(FAU) 제올라이트의 합성 및 구조연구)

  • Moon, Dae Jun;Suh, Jeong-Min;Park, Jong Sam;Choi, Sik Young;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.45-57
    • /
    • 2017
  • Two single crystals of fully dehydrated $Cd^{2+}$-exchanged zeolites Y were prepared by the exchange of ${\mid}Na_{75}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$ ($Na_{75}-Y$, Si/Al = 1.56) with aqueous $0.05M\;Cd(NO_3)_2$ (pH = 3.65) at 294 K, followed by vacuum dehydration at 723 K (crystal 1) and a second crystal, similarly prepared, was exposed to zeolitically dried benzene for 72 hours at 294 K and evacuated (crystal 2). Their structures were determined crystallographically using synchrotron X-rays and were refined to the final error indices using $F_o$>$4{\sigma}(F_o)$ of $R_1/wR_2=0.040/0.121$ and 0.052/0.168, respectively. In crystal $1({\mid}Cd_{36}H_3{\mid}[Si_{117}Al_{75}O_{384}]-FAU)$, $Cd^{2+}$ ions primarily occupy sites I and II, with additional $Cd^{2+}$ ions at sites I', II', and a second site II. In crystal $2({\mid}Cd_{35}(C_6H_6)_{24}H_5{\mid}[Si_{117}Al_{75}O_{384}]-FAU)$, $Cd^{2+}$ ions occupy five crystallographic sites. The 24 benzene molecules are found at two distinct positions within the supercages. The 17 benzene molecules are found on the 3-fold axes in the supercages where each interacts facially with one of site IIa $Cd^{2+}$ ions. The remaining 7 benzene molecules lie on the planes of the 12-rings where each is stabilized by multiple weak electrostatic and van der Waals interactions with framework oxygens.

Crystal Structure of Xenon Encapsulate within Na-A Zeolite

  • Im, U Taek;Park, Man;Heo, Nam Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.75-80
    • /
    • 2000
  • The positions of Xe atoms encapsulated in the molecular-dimensioned cavities of fully dehydrated Na-A have been determined. Na-A was exposed to 1050atm of xenon gas at 400 $^{\circ}C$ for seven days, followed by cooling at pressure to encapsulate Xe atoms. The resulting crystal structure of Na-A(7Xe) (a = 12.249(1) $\AA$, $R_1$ = 0.065, and $R_2$ = 0.066) were determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at 21(1) $^{\circ}C$ and 1 atm. In the crystal structure of Na-A(7Xe), seven Xe atoms per unit cell are distributed over four crystallographically distinct positions: one Xe atom at Xe(1) lies at the center of the sodalite unit, two Xe atoms at Xe(4) are found opposite four-rings in the large cavity, and four Xe atoms, two at Xe(2) and others at Xe(3), respectively, occupy positions opposite and between eight- and six-rings in the large cavity. Relatively strong interactions of Xe atoms at Xe(2) and Xe(3) with $Na^+$ ions of four-, eight-, and six-rings are observed:Na(1)-Xe(2) = 3.09(6), Na(2)-Xe(3) = 3.11(2), and Na(3)-Xe(2) = 3.37(8) $\AA$. In each sodalite unit, one Xe atom is located at its center. In each large cavity, six Xe atoms are found, forming a distorted octahedral arrangement with four Xe atoms, at equatorial positions (each two at Xe(2) and Xe(3)) and the other two at axial positions (at Xe(4)). With various reasonable distances and angles, the existence of $(Xe)_6$ cluster is proposed (Xe(2)-Xe(3) = 4.78(6) and 4.94(7), Xe(2)-Xe(4) = 4.71(6) and 5.06(6), Xe(3)-Xe(4) = 4.11(3) and 5.32(4) $\AA$, Xe(2)-Xe(3)-Xe(2) = 93(1), Xe(3)-Xe(2)-Xe(3) = 87(1), Xe(2)-Xe(4)-Xe(2) = 91(4), Xe(2)-Xe(4)-Xe(3) = 55(2), 59(1), 61(1), and 68(1), and Xe(3)-Xe(4)-Xe(3) = 89($^{\circ}1$)). These arrangements of the encapsulated Xe atoms in the large cavity are stabilized by alternating dipoles induced on Xe(2), Xe(3), and Xe(4) by eight- and six-ring $Na^+$ ions as well as four-ring oxygens, respectively.

Study on the Fuel Decomposition Characteristics and Coke Formation by Type of Endothermic Fuel and Method of Catalyst Molding (흡열연료 종류와 촉매 성형 방법에 따른 분해특성과 코크 생성에 관한 연구)

  • Lee, Tae Ho;Kang, Saetbyeol;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.611-619
    • /
    • 2019
  • This study was carried out to investigate fuel decomposition characteristics and coke formation according to types of endothermic fuels and methods of catalyst molding. Methylcyclohexane (MCH), n-dodecane, and exo-tetrahydrodipentadiene (exo-THDCP) were used as the endothermic fuels. As a catalyst, USY720 supported with platinum was used. It was manufactured by only using pressure to disk-type, or pelletized with a binder and a silica solution. The characteristics of the catalysts according to the molding method were analyzed by X-ray diffraction analysis, scanning electron microscopy, nitrogen adsorption-desorption isotherm, and ammonia temperature programmed desorption analysis. The reaction was carried out under conditions of high temperature and high pressure ($500^{\circ}C$, 50 bar) in which the fuel could exist in a supercritical state. The product was analyzed by gas chromatograph/mass spectrometer and the coke produced by the catalyst was analyzed by thermogravimetric analyzer. After the reaction, the composition of the products varied greatly depending on the structure of the fuel. In addition, the crystallinity and surface properties of the catalysts were not changed by the method of catalyst molding, but the changes of the acid sites and the pore characteristics were observed, which resulted in changes in the amount and composition of products and coke.

Quality Characteristics of Cherry Tomatoes Packaged with Paper Bag Incorporated with Antimicrobial Agents (항균소재를 함유한 포장재에 의한 방울토마토의 저장중 품질 특성 변화)

  • Park, Woo-Po;Cho, Sung-Hwan;Kim, Chul-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1381-1384
    • /
    • 2004
  • In order to help the preservation of the cherry tomatoes, antimicrobial paper incorporating grapefruit seed extract and zeolite was applied to packaging fruits. The fruits were packed with a paper bag of 15.5${\times}$24 cm and then stored at 1$0^{\circ}C$. During the storage, weight loss, pH, total acidity, soluble solid content, microbial load and decay were measured as quality indices. Steady weight loss due to the transpiration was observed to slightly increase the solid content during the storage with little difference between the packaging treatments. There were little change in pH and acidity of the stored fruits. The microbial loads of total aerobic bacteria, and yeast/mold counts were significantly suppressed during 10 day storage by the antimicrobial paper packaging, which also contributed to reducing the decayed fruits observed after 15 days.