Browse > Article
http://dx.doi.org/10.9727/jmsk.2017.30.2.45

Synthesis and Structural Characterization of Benzene-sorbed Cd2+-Y(FAU) Zeolite  

Moon, Dae Jun (Department of Applied Chemistry, Andong National University)
Suh, Jeong-Min (Department of Bio-Environmental Energy, Pusan National University)
Park, Jong Sam (Department of Radiologic Technology, Daegu Health College)
Choi, Sik Young (Department of Applied Chemistry, Andong National University)
Lim, Woo Taik (Department of Applied Chemistry, Andong National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.30, no.2, 2017 , pp. 45-57 More about this Journal
Abstract
Two single crystals of fully dehydrated $Cd^{2+}$-exchanged zeolites Y were prepared by the exchange of ${\mid}Na_{75}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$ ($Na_{75}-Y$, Si/Al = 1.56) with aqueous $0.05M\;Cd(NO_3)_2$ (pH = 3.65) at 294 K, followed by vacuum dehydration at 723 K (crystal 1) and a second crystal, similarly prepared, was exposed to zeolitically dried benzene for 72 hours at 294 K and evacuated (crystal 2). Their structures were determined crystallographically using synchrotron X-rays and were refined to the final error indices using $F_o$>$4{\sigma}(F_o)$ of $R_1/wR_2=0.040/0.121$ and 0.052/0.168, respectively. In crystal $1({\mid}Cd_{36}H_3{\mid}[Si_{117}Al_{75}O_{384}]-FAU)$, $Cd^{2+}$ ions primarily occupy sites I and II, with additional $Cd^{2+}$ ions at sites I', II', and a second site II. In crystal $2({\mid}Cd_{35}(C_6H_6)_{24}H_5{\mid}[Si_{117}Al_{75}O_{384}]-FAU)$, $Cd^{2+}$ ions occupy five crystallographic sites. The 24 benzene molecules are found at two distinct positions within the supercages. The 17 benzene molecules are found on the 3-fold axes in the supercages where each interacts facially with one of site IIa $Cd^{2+}$ ions. The remaining 7 benzene molecules lie on the planes of the 12-rings where each is stabilized by multiple weak electrostatic and van der Waals interactions with framework oxygens.
Keywords
Zeolite Y; $Cd^{2+}$ ion; Benzene; Sorption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bae, M. N. and Kim, Y. (1998) Crystal Structure of an Acetylene Sorption Complex of Dehydrated Fully Mn(II)-Exchanged Zeolite X. Bulletin of the Korean Chemical Society, 19, 1095-1098.
2 Bruker-AXS (ver. 6.12), XPREP, Program for the Automatic Space Group Determination, Bruker AXS Inc., Madison, WI (2001).
3 Bekkum, H. V., Flanigen, E. M., Jacobs, P. A., and Jansen, J. C. (2001) Introduction to Zeolite Science and Practice. Elsevier, 44p.
4 Chon, H., Ihm, S.-K., and Uh, Y. S. (1997) Studies in Surface Science and Catalysis, Elsevier, Amsterdam, 105, 811p.
5 Choi, E. Y., Kim, Y., and Seff, K. (2002) Crystal Structure of a Mesitylene Sorption Complex of Dehydrated Fully $Ca^{2+}$-Exchanged Zeolite X. Sorbed Mesitylene Appears to be Significantly Nonplanar. Journal of Physical Chemistry B, 106, 5827-5832.   DOI
6 Choi, E. Y., Kim, Y., Han, Y. W., and Seff, K. (2000) Structure of a cyclopropane sorption complex of dehydrated fully $Mn^{2+}$-exchanged zeolite X. Microporous and Mesoporous Materials, 40, 247-255.   DOI
7 Cromer, D. T. (1965) Anomalous dispersion corrections computed from self-consistent field relativistic Dirac-Slater wave functions. Acta Crystallographica, 18, 17-23.   DOI
8 Doyle, P. A. and Turner, P. S. (1968) Relativistic Hartree-Fock X-ray and electron scattering factors. Acta Crystallographica A, 24, 390-397.   DOI
9 Ibers, J. A. and Hamilton, W. C. (1974a) International Tables for X-ray Crystallography, Kynoch Press, Birmingham, IV, 71-98.
10 Ibers, J. A. and Hamilton, W. C. (1974b) International Tables for X-ray Crystallography, Kynoch Press, Birmingham, IV, 148-150.
11 Jang, S. B., Jeong, M. S., Kim, Y., and Seff, K. (1997) Crystal Structures of Dehydrated Fully $Mn^{2+}$-Exchanged Zeolite X and of Its Ethylene Sorption Complex. Journal of Physical Chemistry B, 101, 9041-9045.   DOI
12 Kim, Y., Yeom, Y. H., Choi, E. Y., Kim, A. N., and Han, Y. W. (1998) Crystal Structure of a Benzene Sorption Complex of Dehydrated Fully $Cd^{2+}$- Exchanged Zeolite X. Bulletin of the Korean Chemical Society, 19, 1222-1226.
13 Kwon, J. H., Jang, S. B., Kim, Y., and Seff, K. (1996) Two Anhydrous Zeolite X Crystal Structures, $Cd_{46}Si_{100}Al_{92}O_{384}$ and $Cd_{24.5}Tl_{43}Si_{100}Al_{92}O_{384}$. Journal of Physical Chemistry, 100, 13720-13724.   DOI
14 Lim, W. T., Seo, S. M. Okubo, T., and Park, M. (2010a) Crystallinity of large single crystals of FAU-type zeolites with a wide range of Si/Al ratios. Journal of Porous Materials, 18, 305-317.
15 Lim, W. T., Seo, S. M., Wang, L., Lu, G. Q., and Seff, K. (2010b) Single-crystal structures of highly $NH^{4+}$-exchanged, fully deaminated, and fully $Tl^+$-exchanged zeolite Y (FAU, Si/Al = 1.56), all fully dehydrated. Microporous and Mesoporous Materials, 129, 11-21.   DOI
16 Loewenstein, W. (1954) The distribution of a aluminium in the tetrahedra of silicates and aluminates. American Mineralogist, 39, 92-96.
17 Minor, W., Cymborowski, M., Otwinowski, Z., and Chruszcz, M. (2006) HKL-3000: the integration of data reduction and structure solution - from diffraction images to an initial model in minutes. Acta Crystallographica Section D, 62, 859-866.   DOI
18 Moon, D. J., Lim, W. T., and Seff, K. (2016) Structures of the Subnanometer Clusters of Cadmium Sulfide Encapsulated in Zeolite Y: $Cd_4S^{6+}$ and $Cd(SHCd)_4{6+}$. Journal of Physical Chemistry C, 120, 16722-16731.   DOI
19 Robert, C. W. (1989/1990) Handbook of Chemistry and Physics, 70th ed., The Chemical Rubber Co.: Cleveland, OH, F-187p.
20 Shamsuzzoha, M., Kim, Y. H., and Lim, W. T. (2011a) Single-Crystal Structures of the o-, m-, and p-Xylene Sorption Complexes of Fully Dehydrated, Fully $Mn^{2+}$-Exchanged Zeolite Y (FAU). Journal of Physical Chemistry C, 115, 17750-17760.   DOI
21 Shamsuzzoha, M., Kim, Y. H., and Lim, W. T. (2011b) Single-Crystal Structure of a Toluene Sorption Complex of Fully Dehydrated, Fully $Mn^{2+}$- Exchanged Zeolite Y (FAU), ${\left|Mn_{37.5}(C_7H_8)_{17}\right|}\;{\left[Si_{117}Al_{75}O_{384}\right]}$-FAU. Journal of Physical ChemistryC, 115, 24681-24687.
22 Shamsuzzoha, M., Seo, S. M., Kim, Y. H., and Lim, W. T. (2011c) Preparation and single-crystal structure of mesitylene sorption complex of fully dehydrated fully $Mn^{2+}$-exchanged zeolite Y (FAU). Microporous and Mesoporous Materials, 143, 326-332.   DOI
23 Shamsuzzoha, M.. Seo, S. M., Kim, Y. H., and Lim, W. T. (2011d) Benzene sorption complex of fully dehydrated fully $Mn^{2+}$-exchanged zeolite Y (FAU) and its single-crystal structure. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 70, 59-68.   DOI
24 Sheldon, R. A., Elings, J. A., Lee, S. K., Lempers, H. E. B., and Downing, R. S. (1998) Zeolite-catalysed rearrangements in organic synthesis. Journal of Molecular Catalysis A: Chemical, 134, 129-135.   DOI
25 Sheldrick, G. M. (2008) A short history of SHELX. Acta Crystallographica A, 64, 112-122.   DOI
26 Stoicheff, B. P. (1954) High resolution Raman spectroscopy of gases. II. Rotational spectra of $C_6H_6$ and $C_6D_6$ and internuclear distances in the benzene molecule. Canadian Journal of Physics, 32, 339-346.   DOI
27 Zhu, L., Seff, K. Olson, D. H., Cohen, B. J., and Dreele, R. B. V. (1999) Hydronium Ions in Zeolites. 1. Structures of Partially and Fully Dehydrated $Na,H_3O-X$ by X-ray and Neutron Diffraction. Journal of Physical Chemistry B, 103, 10365-10372.   DOI
28 Tanabe, K. and Hoelderich, W. (1999) Industrial application of solid acid-base catalysts. Applied Catalysis A: General, 181, 399-434.   DOI
29 Yeom, Y. H., Kim, A. N., Kim, Y., Song, S. H., and Seff, K. (1998) Crystal Structure of a Benzene Sorption Complex of Dehydrated Fully $Ca^{2+}$- Exchanged Zeolite X. Journal of Physical Chemistry B, 102, 6071-6077.   DOI