• Title/Summary/Keyword: Zebrafish

Search Result 251, Processing Time 0.029 seconds

Zebrafish as a research tool for human diseases pathogenesis and drug development

  • Kim, Young Sook;Cho, Yong Wan;Lim, Hye-Won;Sun, Yonghua
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.442-453
    • /
    • 2022
  • Various animal models have been used to study the efficacy and action mechanisms of human diseases and medicines. Zebrafish (Danio rerio) is increasingly and successfully used as a model in translational research on human diseases. We obtained necessary information from original peer reviewed articles published in scientific 54 journals, such as Pubmed, Google Scholar, Scopus scince their inception until Dec, 2020 using the following terms: zebrafish animal models, herbal medicine, in vivo screening. In this review, we discuss the recent contributions of the various zebrafish disease models to study of herbal medicines. We focused on cancer, eye diseases, vascular diseases, diabetes and its complications, and cosmetic dermatology. We also highlight the molecular action mechanisms of medicines against these disease, demonstrated using zebrafish embryo. Zebrafish can be pivotal in bridging the gap from lab to clinical bedside. It is used as a model to understand human diseases pathogenies with further scope for drug development. Furthermore, zebrafish can reduce rat and mouse animals in biomedical research.

A Practical Protocol of Zebrafish Heart Rate Measurement for High School Students

  • Cho, Jeong Hoon
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.155-158
    • /
    • 2021
  • To study the effects of hormones and neurotransmitters, zebrafish (Danio rerio) are a great substitute for water fleas (Daphnia). The zebrafish is an ideal vertebrate model because it has a transparent embryonic stage. It is easy to get consistent heart rate measurements in embryonic zebrafish when treating them with hormones and neurotransmitters. To observe the heart rate, two to three embryonic zebrafish are anesthetized with MS-222 and then transferred to a glass slide specifically designed for heart observation and easy application of various chemicals. After the heartbeats are counted for 2 minutes, apply either 100 µM epinephrine or 100 µM acetylcholine to the zebrafish. Wait 5, 10, and 20 minutes and count the heartbeats at each time point. All procedures are repeated three times. The final results are averaged and analyzed by using statistical methods. The above method which we have developed is practical enough for high school students to measure the heart rate in zebrafish under various conditions and to analyze the data set.

Alcohol Impairs learning of T-maze Task but Not Active Avoidance Task in Zebrafish

  • Yang, Sunggu;Kim, Wansik;Choi, Byung-Hee;Koh, Hae-Young;Lee, Chang-Joong
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.303-307
    • /
    • 2003
  • The aim of this study is to investigate whether alcohol alters learning and memory processes pertaining to emotional and spatial factors using the active avoidance and T-maze task in zebrafish. In the active avoidance task, zebrafish were trained to escape from one compartment to another to avoid electric shocks (unconditioned stimulus) following a conditioned light signal. Acquisition of active avoidance task appeared to be normal in zebrafish that were treated with 1% alcohol for 30 min for 17 days until the end of the behavioral test, and retention ability of learned behavior, tested 2 days later, was the same as control group. In the T-maze task, the time to find a reservoir was compared. While the latency was similar during the 1 st training session between control and alcohol-treated zebrafish, it was significantly longer in alcohol-treated zebrafish during retention test 24 h later. Furthermore, when alcohol was treated 30 min after 2nd session without prior treatment, zebrafish demonstrated similar retention ability compared to control. These results suggest that chronic alcohol treatment alters spatial learning of zebrafish, but not emotional learning.

Fishing for synucleinopathy models

  • Noor, Suzita Mohd;Norazit, Anwar
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.3
    • /
    • pp.117-139
    • /
    • 2022
  • Synucleinopathies such as Parkinson's disease (PD) are incurable neurodegenerative conditions characterised by the abnormal aggregation of α-synuclein protein in neuronal cells. In PD, fibrillary synuclein aggregation forms Lewy bodies and Lewy neurites in the substantia nigra and cortex on the brain. Dementia with Lewy bodies and multiple system atrophy are also associated with α-synuclein protein abnormalities. α-synuclein is one of three synuclein proteins, and while its precise function is still unknown, one hypothesis posits that α-synuclein propagates from the enteric nervous system through the vagus nerve and into the brain, resulting in synucleinopathy. Studies on synucleinopathies should thus encompass not only the central nervous system but must necessarily include the gut and microbiome. The zebrafish (Danio rerio) is a well-established model for human neuronal pathologies and have been used in studies ranging from genetic models of hereditary disorders to neurotoxin-induced neurodegeneration as well as gut-brain-axis studies. There is significant genetic homology between zebrafish and mammalian vertebrates which is what makes the zebrafish so amenable to modelling human conditions but in the case of synucleinopathies, the zebrafish notably does not possess an α-synuclein homolog. Synuclein orthologs are present in the zebrafish however, and transgenic zebrafish that carry human α-synuclein have been generated. In addition, the zebrafish is a highly advantageous model and ideal replacement for reducing the use of mammalian models. This review discusses the application of the zebrafish as a model for synucleinopathies in efforts to further understand synuclein function and explore therapeutic strategies.

Inheritance of Golden Coloration in the Zebrafish, Danio rerio (Zebrafish (Danio rerio)의 체색 변이에 관한 유전 분석)

  • 송춘복;이병문
    • Journal of Aquaculture
    • /
    • v.10 no.4
    • /
    • pp.395-402
    • /
    • 1997
  • The study has been conducted in order to understand the inheritance of body color in the wild type zebrafish (zebra danio), Danio rerio, and its golden mutant (golden danio). The body color was also studied to determine the effect of golden coloration on the survival rate of zebrafish eggs and larvae up to 15 days after fertilization. Reciprocal monohybrid crosses between the wild and the golden type of zebrafish indicated that golden coloration was controlled by a single gene which had two alleles. Transmission of these alleles from parents to their progenies followed the principles of dominance and segregation based on Mendelian inheritance. Similar results from the reciprocal crosses implied that a locus for golden coloration was located on an autosomal chromosome. On the other hand, average survival rates from four different types of mating between, and within, zebra and golden danio suggested that golden coloration seemed to be associated with the survival rate of zebrafish, especially in its early embryonic stage. This indicated that homozygous recessive golden mutation was likely to weaken the golden danio's chance of survival.

  • PDF

The difference of metabolic profile between male and female zebrafish

  • Yoon, Dahye;Choi, Jin;Choi, Hyeonsoo;Kim, Suhkmann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.13-16
    • /
    • 2016
  • Various experiments using zebrafish have been highlighted recently in the scientific community. Because it is possible to conduct practical experiment from various neurological research to area of genetic study or toxicity experiment. However, gender difference effects are nearly not considered. If the gender differences of zebrafish are considered it is possible to obtain more accurate data. In this study, zebrafish which have different genders were compared each other with NMR-based metabolomics. The extracts of male and female zebrafish were measured by 600 MHz NMR spectrometer. Statistical analysis and target profiling were conducted. As a result, muscle related metabolites were observed in male zebrafish and nerve related metabolites were observed in female zebrafish.

Norflurazon causes developmental defects including cardiovascular abnormalities in early-stage zebrafish (Danio rerio)

  • An, Garam;Park, Hahyun;Hong, Taeyeon;Song, Gwonhwa;Lim, Whasun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.176-182
    • /
    • 2022
  • Norflurazon is widely used on agricultural lands and has a high potential to pollute water sources. However, its effects on fish have not been fully elucidated. The purpose of our study was to determine whether norflurazon adversely affects the developmental stage of zebrafish, which are frequently used as a model system to evaluate the environmental impact of pollutants. Norflurazon interfered with the hatching of zebrafish embryos and induced several sublethal deformities including body length reduction, increased yolk sac volume, and enlargement of the pericardial region. We further examined the cardiotoxicity of norflurazon in the flk1:eGFP transgenic zebrafish line. The vascular network, mainly in the brain region, was significantly disrupted in norflurazon-exposed zebrafish. In addition, due to the failure of cardiac looping, norflurazon-exposed zebrafish had an abnormal cardiac structure. These developmental abnormalities were related to the apoptotic process triggered by norflurazon. Overall, the present study demonstrated the non-target toxicity of norflurazon by analyzing the hazardous effects of norflurazon on developing zebrafish.

Mind Bomb1 and DeltaD are Localized into Autophagosome after Endocytosis in Zebrafish during Neurogenesis

  • Kim, Min-Jung
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.215-221
    • /
    • 2011
  • Endocytosis of the Notch ligand, DeltaD, by mind bomb1 is indispensable for activation of Notch in cell fate determination, proliferation, and differentiation during zebrafish neurogenesis. Loss of mind bomb1 activity as an E3 Ubiquitin ligase causes the accumulation of deltaD at the plasma membrane and results in the ectopic neurogenic phenotype by activation of Notch in early zebrafish embryogenesis. However, the regulatory mechanism of deltaD during neurogenesis is not identified yet. This study aims to analyze the pathway of mib1 and deltaD after endocytosis in vivo during zebrafish embryogenesis. Mind bomb1 and deltaD are co-localized into autophagosome and mutant form of mind bomb1 fails to cargo deltaD into autophagosomes. These findings suggest that mind bomb I mediates deltaD regulation by autophagy in an ubiquitin-dependent manner during zebrafish embryogenesis.

1,8-cineole protected human lipoproteins from modification by oxidation and glycation and exhibited serum lipid-lowering and anti-inflammatory activity in zebrafish

  • Cho, Kyung-Hyun
    • BMB Reports
    • /
    • v.45 no.10
    • /
    • pp.565-570
    • /
    • 2012
  • We recently reported that a water extract of laurel or turmeric, 1,8-cineole enriched fractions, showed hypolipidemic activity in the zebrafish model. Therefore, the present study investigated the cineole's anti-oxidant and anti-inflammatory activities in lipoprotein metabolism in vitro and in vivo. Cineole had inhibitory effects on cupric ion-mediated oxidation of lipoproteins in general, while simultaneously enhancing ferric ion removal ability in high-density lipoprotein (HDL). Hypercholesterolemia was induced in zebrafish using cholesterol-feeding treatment, 4% cholesterol, for 3 weeks. After feeding with or without the addition of cineole, the results revealed that cineole possessed lipid-lowering and anti-inflammatory activities in hypercholesterolemic zebrafish. In addition, serum amyloid A and interleukin-6 levels were lowered and lipid accumulation was decreased in the liver. Conclusively, 1,8-cineole was found to have anti-oxidant activities in lipoprotein metabolism both in vitro and in vivo with simultaneous reduction of lipid accumulation in the liver of zebrafish.

Application of zebrafish as a model for evaluation of vaccine efficacy against Philasterides dicentrarchi (Ciliphora: Scuticociliatia)

  • Lee, Eun-Hye;Kim, Ki-Hong
    • Journal of fish pathology
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • Zebrafish was firstly applied to an experimental model for scuticociliatosis caused by Philasterides dicentrarchi, a facultative parasitic ciliate in cultured marine fish. The susceptibility of zebrafish to infection of P. dicentrarchi was assessed by intraperitoneal injection of the ciliates, which produced typical symptoms of scuticociliatosis and significant mortality. The potential use of zebrafish as a model to evaluate the vaccine efficacy against scuticociliatosis was analyzed by immunization of zebrafish with the ciliates lysate. Furthermore, the effect of different adjuvants, such as Quillaja saponin (QS), Montanide, and Freund’s incomplete adjuvant (FIA) on the protective efficacy of the vaccine was investigated. Groups of zebrafish injected with QS or Montanide alone showed higher survival of fish against challenge test compared to control fish. The results suggest that adjuvant-mediated enhancement of innate immune responses play important roles in protection of fish against scuticociliatosis. The considerably high survival in the fish immunized with the antigen alone indicates that the ciliate lysate itself is highly immunogenic to zebrafish, which can elicit protective immune responses. The protective potential of the antigen, ciliate lysate, was enforced through combined administration with adjuvants including QS, Montinide and FIA. No or low mortalities in the groups of fish immunized with the antigen plus adjuvants suggests that the adaptive immune responses of zebrafish might be accelerated by the adjuvants or the protective potential of the antigen and adjuvants might synergistically interact. In spite of several shortcomings such as difficulties in sampling of serum and leucocytes enough to routine immunological analyses, zebrafsih might be the most convenient experimental animal for scuticociliatosis.