• Title/Summary/Keyword: ZVS switching

Search Result 615, Processing Time 0.024 seconds

Optimized Design of Bi-Directional Dual Active Bridge Converter for Low-Voltage Battery Charger

  • Jeong, Dong-Keun;Ryu, Myung-Hyo;Kim, Heung-Geun;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.468-477
    • /
    • 2014
  • This study proposes an optimized design of a dual active bridge converter for a low-voltage charger in a military uninterrupted power supply (UPS) system. The dual active bridge converter is among various bi-directional DC/DC converters that possess a high-efficiency isolated bi-directional converter. In the general design, the zero-voltage switching(ZVS) region is reduced when the battery voltage is high. By contrast, efficiency is low because of high conduction losses when the battery voltage is low. Variable switching frequency is applied to increase the ZVS region and the power conversion efficiency, depending on battery voltage changes. At the same duty, the same power is obtained regardless of the battery voltage using the variable switching frequency. The proposed method is applied to a 5 kW prototype dual active bridge converter, and the experimental results are analyzed and verified.

Pulse Density Modulated Zero Voltage Soft-Switching High-Frequency Inverter with Single Switch for Xenon Gas Dielectric Barrier Discharge Lamp Dimming

  • Sugimura, Hisayuki;Suh, Ki-Young;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.391-394
    • /
    • 2006
  • This paper presents soft switching zero voltage switching high frequency inverter for rare gas fluorescent lamp using dielectric-barrier discharge phenomenon. The simple high-frequency inverter can completely achieve stable zero voltage soft switching (ZVS) commutation for wide its output power regulation ranges and load variations under its constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operating principle is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZVS operation commutation, together with its output effective power regulation characteristics-based on the high frequency PDM strategy. The experimental operating performances of this high frequency Inverter are illustrated as compared with computer simulation results and experimental ones. Its light dimming characteristics due to power regulation scheme are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliance implemented here is proven from the practical point of view.

  • PDF

The study of the cell charger using ZVS method (ZVS 방식을 이용한 셀 충전기의 연구)

  • 이종규;류희삼
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.277-279
    • /
    • 2002
  • This paper is an experimental research of the design of a cell battery charger using switching methods. The developed charger in this paper can do both the equalizing current charge and floating charge. Also, it is easily transferable. Power MOS FET was used for the full bridge converter of the charger, and ZVS was applied for the switching method of the converter. Also, Customized IC was used for the control circuit in order to simplify ZVS mode. The setting current and floating current used for the charger were designed by using OP AMP. Based on the process provided by the current research, a sample converter with the power rating of 5KVA was developed and is field-testing to improve its validity and stability.

  • PDF

A Study on the Zero-Voltage-Switching Three-Level DC/DC Converter using Primary Clamping Diodes (1차측 클램핑 다이오드를 이용한 ZVS Three-Level DC/DC 컨버터에 관한 연구)

  • Chon, Yong-Jin;Kim, Yong;Bae, Jin-Yong;Kim, Pil-Soo;Lee, Eun-Young;Chang, Boo-Hoan
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.164-168
    • /
    • 2004
  • A Zero-Voltage-Switching(ZVS) Three-Level Converter realizes ZVS for the switches with the use of the leakage inductance(or external resonant inductance) and the output capacitors of the switches, however; the rectifier diodes suffer from recovery which results in oscillation and voltage spike. In order to solve this problem, this paper proposes a novel ZVS Three-Level converter, which introduces two clamping diodes to the basic Three-Level converter to eliminate the oscillation and clamp the rectified voltage to the reflected input voltage.

  • PDF

A Novel ZVS 3-Level Resonant Pole Inverter (새로운 ZVS 3-레벨 공진폴 인버터)

  • Baek, Ju-W.;Cho, Jung-G.;Yoo, Dong-W.;Song, Doo-I.;Won, Cung-Y.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.360-364
    • /
    • 1995
  • A zero voltage switching (ZVS) three level resonant pole inverter is presented for high power GTO inverters. The concept of auxiliary resonant commutated pole(ARCP) for two level inverter is extended to the three level inverter. The proposed auxiliary commutation circuit consists of one resonant inductor and two bi-directional switches, which provides ZVS condition to the main devices without increasing device voltage or current stresses. The auxiliary device operates with zero current switching(ZCS) which enables use of the low cost thyristors. The proposed circuit can handle higher voltage and higher power(1-10MVA) comparing to the two level one. Operation and analysis of the proposed circuit are illustrated. Experimental results with 10 KW, 4 kHz prototype are presented to verify the principle of operation.

  • PDF

New Isolated Zero Voltage Switching PWM Boost Converter (새로운 절연된 영전압 스위칭 PWM 부스트 컨버터)

  • Cho, Eun-Jin;Moon, Gun-Woo;Jung, Young-Suk;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.535-538
    • /
    • 1994
  • In this paper, an isolated ZVS-PWM boost converter is proposed for single stage line conversion. For power factor correction, we used the half bridge topology at the primary side of isolation transformer permitting switching devices to operate under ZVS by using circuit parastics and operating at a fixed duty ratio near 50%. Thus the relatively continuous input current distortion and small size input filter are also achievable. The ZVS-PWM boost operation of the proposed converter can be achieved by using the boost inductor $L_f$, main switch $Q_3$, and simple auxiliary circuit at the secondary side of isolation transformer. The secondary side circuit differ from a conventional PWM boost converter by introduction a simple auxiliary circuit. The auxiliary circuit is actived only during a short switching transition time to create the ZVS condition for the main switch as that of the ZVT-PWM boost converter. With a single stage, it is possible to achieve a sinusoidal line current at unity power factor as well as the isolated 48V DC output. Comparing to the two stage schemes, overall effiency of the proposed converter is highly improved due to the effective ZVS of all devices as well as single stage power conversion. Thus, it can be operated at high switching frequency allowing use of small size input filter. Minimum voltage and current stress make it high power application possible.

  • PDF

A New High Power Factor ZVT-ZCT AC-DC Boost Converter

  • Ting, Naim Suleyman
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1539-1548
    • /
    • 2018
  • This paper introduces a new soft switched AC-DC boost converter with power factor correction (PFC). In the introduced converter, all devices are turned on and off under soft switching (SS). The main switch is turned on under zero voltage transition (ZVT) and turned off under zero current transition (ZCT). The main diode is turned on under zero voltage switching (ZVS) and turned off under zero current switching (ZCS). Meanwhile, there is not any current or voltage stress on the main devices. Besides, the auxiliary switch is turned on under ZCS and turned off under ZVS. The detailed theoretical analysis of the converter is presented, and also theoretical analysis is verified by a prototype with 100 kHz and 500 W. Also, the proposed converter has 99.8% power factor and 97.5% total efficiency at soft switching operation.

Class D Amplifier Using Multi-Level switching and ZVS (Multi-Level Switching과 ZVS를 이용한 Class D Amplifier)

  • Kim Duil;Kim Hee-Jun;Cho Kyu-Min
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1154-1157
    • /
    • 2004
  • This paper presents design of a class D Amplifier using multi-level switching and Zero-Voltage-Switching(ZVS) technique. The amplifier circuit features zero voltage switching at all switches of the circuit and multi-level switching operation so that the higher efficiency and lower THD could be achieved. A 50-W prototype D class amplifier built and tested it. As a result, the maximum efficiency of $96\%$ and the THD of under $60\%$ were obtained.

  • PDF

A New Zero-Voltage-Switching Bridgeless PFC, Using an Active Clamp

  • Ramezani, Mehdi;Ghasedian, Ehsan;Madani, Seyed M.
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.723-730
    • /
    • 2012
  • This paper presents a new ZVS single phase bridgeless (Power Factor Correction) PFC, using an active clamp to achieve zero-voltage-switching for all main switches and diodes. Since the presented PFC uses a bridgeless rectifier, most of the time, only two semiconductor components are in the main current path, instead of three in conventional single-switch configurations. This property significantly reduces the conduction losses,. Moreover, zero voltage switching removes switching loss of all main switches and diodes. Also, auxiliary switch turns on zero current condition. The presented converter needs just a simple non-isolated gate drive circuitry to drive all switches. The eight stages of each switching period and the design considerations and a control strategy are explained. Finally, the converter operation is verified by simulation and experimental results.

Analysis of a Novel Soft Switching Bidirectional DC-DC Converter

  • Eom, Ju-Kyoung;Kim, Jun-Gu;Kim, Jae-Hyung;Oh, Soon-Tack;Jung, Yong-Chae;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.859-868
    • /
    • 2012
  • In this paper, a novel bidirectional DC-DC converter employing soft switching technique was proposed. Compare to conventional bidirectional converters, the main switches of proposed converter are operated without switching losses. Moreover, auxiliary switches are used, and the switches are operated under zero voltage switching (ZVS) and zero current switching (ZCS) condition. To verify the validity of the proposed converter, mode analysis, design procedure, simulation and experimental results are presented.