This study was performed to develop the molecular marker for sex determination of hare (Lepus coreanus) distributed in Korea which focused on sexual dimorphism between X and Y chromosomal homologous genes, zinc finger-X (ZFX) and -Y (ZFY). The intron 7 regions of ZFX and ZFY genes exhibited differential amplification patterns between male and female hares. The lengths of intron 7 region of ZFX and ZFY genes were 538 and 233-bp, respectively. Especially, the ZFX intron 7 contained a repetitive sequence identified as member of RNA-mediated transposable elements which was similar to CSINE2 commonly found in the rabbit genome. However, it was not present in intron 7 of ZFY gene. The molecular sex typing by polymerase chain reaction (PCR) was also carried out to determine the sex of hare based on difference in lengths between the intron 7 regions of ZFX and ZFY genes. All DNA samples tested had common band amplified from ZFX. However, the male hare DNAs had two distinct bands which amplified from ZFX and ZFY genes, respectively. The results from ZFX-ZFY PCR sex typing were identical to those from phenotypic investigation and from amplification patterns using male-specific sex determining region Y (SRY) gene as well. Finally, this study suggested that the sexual dimorphism between intron 7 regions of ZFX and ZFY could be useful genetic marker to determine sex of hare.
This study was focused on discriminating the molecular sexes of red deer and elk by duplex polymerase chain reaction(PCR) using two primer sets. Sex differentiation of mammals is primarily dependent on the presence or absence of sex determining region Y(SRY) gene encoded on Y chromosome which plays a key role for male development. Zinc finger X-Y(ZFX-ZFY) gene, one of X-Y homology gene group was found on X- and Y- chromosomes, respectively. At first, the nucleotide sequences were characterized for the intron 9 flanking region of ZFX-ZFY genes. The intron 9 of ZFX and ZFY is 529-bp and 665-bp in length, respectively. A transposable element sequence similar to bovine SINE element Bov-tA was detected only in ZFY gene of Cervidae. Sexing analysis was conducted by duplex PCR assay for amplification of SRY and ZFX-ZFY genes. Two differentially amplified patterns were found: one for females has a common band amplified only from ZFX as a template, and another for males had three bands(a common ZFX and two male-specific ZFY and SRY). On the separate tests using each gene, the results was identical to those from duplex PCR assay. Moreover, the results from PCR assays provide also identical information to phenotypic investigation of individuals of red deer, elk as well as their hybridized progenies collected from two isolated farms. These results suggest that it may be a rapid and precise method for determining the sexes by duplex PCR amplification using Y-chromosome specific SRY and X- and Y- homologous ZFX-ZFY genes showing sexual dimorphism in red deer and elk without any other controls.
The objective of this study was to develop a rapid and reliable method for the sex determination of beef using the PCR(polymerase chain reaction) technique. We have used two bovine sex determining genes, SRY and ZFY, on the Y-chromosome to identify the sex of Hanwoo and Holstein beet. We attempted to amplify 1,348 bp and 979 bp fragments from male and female genomic DNA corresponding to the SRY and ZFY genes, respectively, using male specific primers. The amplified PCR products were separated by electrophoresis in a 1.5% agarose gel to detect a male specific DNA band. When DNA from male beef was amplified with primers specific for the SRY gene, a DNA band of 1,348 bp was present in all of the male samples, but absent from all of the female samples. Also, when DNA from male beef was amplified with primers specific for the ZFY gene, a DNA band of 979 bp was observed in all of the male samples, but absent from all female samples. In conclusion, the bovine SRY and ZFY genes are typically found only in male beef. For the practical application of this method for the sexing of commercial beef at the processing and marketing stages after slaughter. a total of 350 beef samples collected randomly from local markets were analyzed for sex determination. The proportions of male and female samples were 252 (72%) and 98 (28%), respectively. Therefore. the SRY and ZFY genes. which are specific for the Y-chromosome, may be useful sex-diagnostic DNA markers to distinguish male meat from female meat.
This study was performed to find out the reasonable sexing methods In the chicken, obtain the basic information for the mechanisms related to chicken sexual differentiation and identify the genes which known to involved in chicken sex differentiation. The chromosome analysis of chicken embryonic fibroblast was a simple method to determine sex of chicken by means of Z and W chromosome identification. The bands of female chicken genomic DNA digested with Xho Ⅰ and Eco RI restriction endonuclease showed to be useful in direct sex determination and these repetitive sequences of Xho Ⅰ and Eco RI families were proposed to be very homologous in their sequences by colony hybridization analysis. Seven of 150 random primers were selected to amplify the W chromosome-specific band by using arbitrary primed PCR and three of them were useful to identify the sex of chicken. To identify the sex differentiation genes in the chicken, PCR for the amplification of ZFY and SRY sequences was performed. ZFY and SRY sequences were amplified successfully in the chicken genome, implying that chicken genome might have the sex-related conserved sequences similar to mammalian ones. The PCR products of ZFY amplification were the same in both sexes, suggesting that these sequences may be located on autosome or Z chromosome. The profile of PCR amplification for SRY sequences showed variation between sexes, but this result was not enough to specify whether the SRY gene in chicken is on the autosome or sex chromosome.
Sin, Seong-Cheol;Kim, Gi-Rak;Jeong, Hwa-Cheol;Park, Jong-Geun;Sin, Gi-Hyeon;Chae, Ji-Seon;Jeong, Gu-Yong;Jeong, Ui-Ryong
Proceedings of the Korean Society for Food Science of Animal Resources Conference
/
2005.05a
/
pp.191-194
/
2005
본 연구는 polymerase chain reaction(PCR)기법을 이용하여 SRY 및 ZFY의 성 결정 유전자의 특정 염기서열을 포함하는 primer를 이용하여 Y-염색체 특이적인 쇠고기 성판별 기술을 개발하기 위해 수행하였다. 성 결정 유전자의 영역에 특정 염기서열을 포함하는 primer를 설계 합성하고 이들 primer를 이용하여 PCR 증폭을 실시한 다음, 각각의 증폭산물을 1.5% agarose gel에 전기영동 하여 웅성 특이적 DNA band의 증폭여부를 확인하였다. SRY 유전자에서 웅성개체 쇠고기는 1,348 bp 크기의 단편을 가진 DNA band가 검출되었으나, 자성개체의 경우 DNA band가 전혀 검출되지 않은 것을 확인 할 수 있었다. 또한, ZFY 유전자에서 웅성개체의 쇠고기는 979 bp 크기의 단편을 가진 DNA band가 모두 검출되었으나, 자성개체의 쇠고기에서는 역시 DNA band가 전혀 검출되지 않았다. 즉,SRY 및 ZFY 유전자는 모두 수소에서 유래한 쇠고기에서 웅성 특이적인 DNA band가 정확히 검출된 반면 암소에서 유래한 쇠고기에서는 웅성 특이적 DNA band가 전혀 검출되지 않았다. 따라서, 본 연구에서 개발한 SRY 또는 ZFY의 웅성 특이적 성 결정유전자를 이용하는 쇠고기 성 감별기술은 시중에서 유통 판매되고 있는 쇠고기의 암수 성감별을 위한 유용한 DNA marker(DNA 표지인자)로 활용할 수 있을 것이다.
Saravanan, T.;Nainar, A. Mahalinga;Kumanan, K.;Kumaresan, A.
Asian-Australasian Journal of Animal Sciences
/
v.16
no.5
/
pp.650-654
/
2003
The accuracy of Polymerase chain reaction (PCR) assay in sexing of sheep embryos was assessed in this study. A total of 174 ovine embryos produced in vitro at different stages of development (2, 4-8 cell stages, morula and blastocyst) were sexed. The universal primers (P1-5EZ and P2-3EZ) used in this assay amplified ZFY/ZFX-specific sequences and yielded a 445 bp fragment in both sexes. Restriction enzyme analysis of ZFY/ZFX-amplified fragments with Sac I exhibited polymorphism between sexes, three and two fragments in males and in females, respectively. For verification of accuracy, blood samples of known sex were utilized as positive controls in each test. The mean percentages of sex identification by this method at 2 cell, 4-8 cell, morula and blastocyst were $73.00{\pm}5.72$, $89.77{\pm}3.79$, $3.33{\pm}8.08$ and $79.6{\pm}9.09$, espectively with the over all male to female ratio of 1:0.87. It is concluded that the ZFY/ZFX based method is highly reliable for the sexing of sheep embryos.
We developed a polymerase chain reaction (PCR)-based molecular method for sexing and identification using sexual dimorphism between the Zinc Finger-X and -Y (ZFX-ZFY) gene and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for mitochondrial DNA (mtDNA) cytochrome B (CYTB) gene in meat pieces and commercial sausages from animals of different origins. Sexual dimorphism based on the presence or absence of SINE-like sequence between ZFX and ZFY genes showed distinguishable band patterns between male and female DNA samples and were easily detected by PCR analyses. Male DNA had two PCR products appearing as distinct two bands (ZFX and ZFY), and female DNA had a single band (ZFX). Molecular identification was carried out using PCR-RFLP of CYTB gene, and showed clear species classification results. The results yielded identical information on the sexes and the species of the meat samples collected from providers without any records. The analyses for DNA isolated from commercial sausage showed that pig was the major source but several sausages originated from chicken and Atlantic cod. Applying this PCR-based molecular method was useful and yielded clear sex information and identified the species of various tissue samples originating from livestock.
This paper reports 3 cases with 46,XX sex reversed male. Three 46,XX hypogonadal subjects showed complete sex reversal and had normal phallus and azoospermia. We studied them under clinical, cytogenetic and molecular aspects to find out the origin of the sex reversal. Patients had markedly elevated serum follicle-stimulating hormone (FSH) and lutenizing hormone (LH) and decreased or normal range of serum testosterone. The testicular volumes were small (3-8ml). Testicular biopsy showed Leydig cell hyperplasia and atrophy of seminiferous tubules. We obtained the results of normal 46,XX, and the presence of Y chromosome mosaicism was ruled out through XY dual fluorescent in situ hybridization (FISH). By using polymerase chain reaction (PCR), we amplified short arm (SRY, PABY, ZFY and DYS14), centromere (DYZ3), and heterochromatin (DYZ1) region of the Y chromosome. PCR amplification of DNA from these patients showed the presence of the sex-determining region of the Y chromosome (SRY) but didn't show the centromere and heterochromatin region sequence. The SRY gene was detected in all the three patients. Amplification patterns of the other regions were different in these patients; one had four amplified loci (PABY+, SRY+, ZFY+, DYS14+), another had two loci (SRY+, ZFY+) and the other had two loci (PABY+, SRY+). We have found that each patient's translocation elements had different breakpoints at upstream and downstream of the SRY gene region. We conclude that the testicular development in 46,XX male patients were due to insertion or translocation of SRY gene into X chromosome or autosomes.
A method for sex determination of pigs was examined using polymerase chain reaction(PCR). Sex determining region Y(SRY) gene encoded on Y chromosome plays a key role for primary male development. Zinc finger X-Y(ZFX-ZFY) gene, one of the X-V homology gene group was found on the X and Y chromosomes, respectively, We tested for molecular sexing by amplification patterns of SRY and ZF genes. Genomic DNAs from various resources including porcine hairs and semen collected from domestic pig breeds and native pigs was used for PCR assay of each gene. The amplified products for porcine SRY gene were yielded only in males but not in females. On the other hand, two differential patterns were observed in amplification of ZF gene reflecting the chromosomal dimorphism by a length polymorphism between X and Y chromosomes. Of both, a common band was detected in all individuals tested so that this band might be amplified from ZFX gene as a PCR template, but another is specific for males indicated that from ZFY. The result of PCR assay provides identical information to that from investigation of phenotypic genders of the pigs tested. We suggest that this PCR strategy to determine porcine sexes using comparison of the amplification patterns of the SRY gene specific for Y chromosome and the dimorphic ZF gene between X and Y chromosomes may be a rapid and precise method for discrimination of two sexes and applied to DNA analysis of small samples such as embryonic blastomere, semen, and hairs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.