DOI QR코드

DOI QR Code

Molecular Sexing Using SRY and ZF Genes in Pigs

돼지 SRY와 ZF 유전자를 이용한 성판별 기법

  • Cho, I.C. (National Institute of Subtropical Agriculture, R.D.A.) ;
  • Kang, S.Y. (National Institute of Subtropical Agriculture, R.D.A.) ;
  • Lee, S.S. (National Institute of Subtropical Agriculture, R.D.A.) ;
  • Choi, Y.L. (National Institute of Subtropical Agriculture, R.D.A.) ;
  • Ko, M.S. (National Institute of Subtropical Agriculture, R.D.A.) ;
  • Oh, M.Y. (Department of Life Science, College of Natural Sciencs, Cheju Natioanl University) ;
  • Han, Sang-Hyun (National Institute of Subtropical Agriculture, R.D.A.)
  • 조인철 (농촌진흥청 난지농업연구소) ;
  • 강승률 (농촌진흥청 난지농업연구소) ;
  • 이성수 (농촌진흥청 난지농업연구소) ;
  • 최유림 (농촌진흥청 난지농업연구소) ;
  • 고문석 (농촌진흥청 난지농업연구소) ;
  • 오문유 (제주대학교 생명과학과) ;
  • 한상현 (농촌진흥청 난지농업연구소)
  • Published : 2005.06.30

Abstract

A method for sex determination of pigs was examined using polymerase chain reaction(PCR). Sex determining region Y(SRY) gene encoded on Y chromosome plays a key role for primary male development. Zinc finger X-Y(ZFX-ZFY) gene, one of the X-V homology gene group was found on the X and Y chromosomes, respectively, We tested for molecular sexing by amplification patterns of SRY and ZF genes. Genomic DNAs from various resources including porcine hairs and semen collected from domestic pig breeds and native pigs was used for PCR assay of each gene. The amplified products for porcine SRY gene were yielded only in males but not in females. On the other hand, two differential patterns were observed in amplification of ZF gene reflecting the chromosomal dimorphism by a length polymorphism between X and Y chromosomes. Of both, a common band was detected in all individuals tested so that this band might be amplified from ZFX gene as a PCR template, but another is specific for males indicated that from ZFY. The result of PCR assay provides identical information to that from investigation of phenotypic genders of the pigs tested. We suggest that this PCR strategy to determine porcine sexes using comparison of the amplification patterns of the SRY gene specific for Y chromosome and the dimorphic ZF gene between X and Y chromosomes may be a rapid and precise method for discrimination of two sexes and applied to DNA analysis of small samples such as embryonic blastomere, semen, and hairs.

Keywords

References

  1. Aasen, E. and Medrano, J. F. 1990. Amplification of the ZFY and ZFX genes for sex identification in humans, cattle, sheep and goats. Biotechnology 8:1279-1281 https://doi.org/10.1038/nbt1290-1279
  2. Alves, B. C., Hossepian de Lima, V. F., Teixeira, C. M. and Moreira-Filho, C. A. 2003. Use of primers derived from a new sequence of the bovine Y chromosome for sexing Bas taurus and Bos indicus embryos. Theriogenology 59: 1415-1419 https://doi.org/10.1016/S0093-691X(02)01191-3
  3. Anderson, G. B. 1987. Identification of embryonic sex detection of H-Y antigen. Theriogenology 27: 81-97 https://doi.org/10.1016/0093-691X(87)90072-0
  4. Angelo, M. and Moreira, M. 2002. SRY evolution in Cebidae(Platyrrhini: Primates). J. Mol. Evol. 55: 92-103 https://doi.org/10.1007/s00239-001-2308-7
  5. Barr, M. L. 1960. Sexual dimorphism in interphase nuclei. Am. J. Hum. Genet. 12:118-127
  6. Bello, N. and Sanchez, A. 1999. The identification of a sex-specific DNA marker in the ostrich using a random amplified polymorphic DNA(RAPD) assay. Mol. Ecol. 8:667-669 https://doi.org/10.1046/j.1365-294x.1999.00549.x
  7. Birren, B., Green, E. D., Klapholz, S., Myers, R . M. and Roskams, J. 1997. Genome analysis:A laboratory manual. Cold Spring Harbor Laboratory Press, USA
  8. Chung, Y., Jeon, J. T., Kim, K. D., Lee, S. H. and Hong, K. C. 1996. Sex determination in somatic and embryonic cells of the pig by FISH and PCR. Korean J. Anim. Reprod. 20:323-331
  9. Clepet, C., Schafer, A. J., Sinclair, A. H., Palmer, M. S., Lovell-Badge, R. and Goodfellow, P. N. 1993. The human SRY transcript. Hum. Mol. Genet. 2:2007-2012 https://doi.org/10.1093/hmg/2.12.2007
  10. Erlandsson, R., Wilson, J. F. and Paabo, S. 2000. Sex chromosomal transposable element accumulation and male-driven substitutional evolution in humans. Mol. Biol. Evol. 17:804-812 https://doi.org/10.1093/oxfordjournals.molbev.a026359
  11. Fuse, H., Satomi, S., Kazama, T., Katayama, T., Nagabuchi, S., Tamura, T., Nakahori, Y. and Nakagome, Y. 1991. DNA hybridization study using V-specific probes in an XX-male. Andrologia 23: 237-239 https://doi.org/10.1111/j.1439-0272.1991.tb02547.x
  12. Gardner, R. L. and Edwards, R. G. 1968. Control of the sex ratio at full term in rabbit by transferring sexed blastocysts. Nature 218:346-349 https://doi.org/10.1038/218346a0
  13. Goodfellow, P. N. and Lovell-Badge, R 1993. SRY and sex determination in mammals. Ann. Rev. Genet. 27:71-92 https://doi.org/10.1146/annurev.ge.27.120193.000443
  14. Hacker, A., Capel, B., Goodfellow, P. and Lovell-Badge, R. 1995. Expression of Sry, the mouse sex determining gene. Development 121:1603-1614
  15. Han, S. H., Kim, J. H., Song, J. H., Oh, J. H., Oh, Y. S., Jung, Y. H., Kayano, H. and Oh, M. Y. 2004. Polymorphism of the mtDNA cytochrome B and NADH dehydrogenase 6 genes in Tsushima and Jeju native horses. Korean J. Genetics 26:1-7
  16. Hasegawa, T., Sato, F., Ishida, N., Fukushima, Y. and Mukoyama, H. 2000. Sex determination by simultaneous amplification of equine SRY and ame/ogenin genes. J. Vet. Med. Sci. 62: 1109-1110 https://doi.org/10.1292/jvms.62.1109
  17. Hirayama, H., Kageyama, S., Moriyasu, S., Hirano, T., Sugimoto, Y., Kobayashi, N., Inaba, M., Sawai, K., Onoe, S. and Minamihashi, A. 2004. Genetic diagnosis of claudin-16 deficiency and sex determination in bovine preimplantation embryos. J. Reprod. Dev. 50:613-618 https://doi.org/10.1262/jrd.50.613
  18. Horng, Y. M. and Huang, M. C. 2003. Male-specific DNA sequences in pigs. Theriogenology 59:841-848 https://doi.org/10.1016/S0093-691X(02)01150-0
  19. Horvat, S., Medrano, J. F., Behboodi, E., Anderson, G. B. and Murray, J. D. 1993. Sexing and detection of gene construct in microinjected bovine blastocysts using the polymerase chain reaction. Transgenic Res. 2:134-140 https://doi.org/10.1007/BF01972606
  20. Iwase, M., Satta, Y., Hirai, Y., Hirai, H., Imai, H. and Takahata, N. 2003. The amelogenin loci span ancient pseudoautosomal boundary in diverse mammalian species. Proc. Natl. Acad. Sci. U.S.A. 100:5258-5263 https://doi.org/10.1073/pnas.0635848100
  21. King, W. A., Linares, T., Gustavesson, I. and Bane, A. A. 1979. A method for preparation of chromosome from bovine zygotes and blastocyts. Vet. Sci. Commun. 3:51-56 https://doi.org/10.1007/BF02268951
  22. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. and Lovell-Badge, R. 1991. Male development of chromosomally female mice transgenic for Sry. Nature 351:117-121 https://doi.org/10.1038/351117a0
  23. Lahr, G., Maxson, S. C., Mayer, A., Just, W., Pilgrim, C. and Reisert, I. 1995. Transcription of the Y chromosomal gene, Sry, in adult mouse brain. Mol. Brain Res. 33:179-182 https://doi.org/10.1016/0169-328X(95)00136-G
  24. Lawson, L. J. and Hewitt, G. M. 2002. Comparison of substitution rates in ZFX and ZFY introns of sheep and goat related species supports the hypothesis of male-biased mutation rates. J. Mol. Evol. 54:54-61 https://doi.org/10.1007/s00239-001-0017-x
  25. Lee, J. H., Park, J. H., Lee, S. H., Park, C. S. and Jin, D. I. 2004. Sexing using single blastomere derived from IVF bovine embryos by fluorescence in situ hybridization(FISH). Theriogenology 62: 1452-1458 https://doi.org/10.1016/j.theriogenology.2004.02.012
  26. Margarit, E., Guillen, A., Rebordosa, C., Vidal-Taboada, J., Sanchez, M., Ballesta, F. and Oliva, R. 1998. Identification of conserved potentially regulatory sequences of the SRY gene from 10 different species of mammals. Biochem. Biophys. Res. Commun. 245:370-377 https://doi.org/10.1006/bbrc.1998.8441
  27. McCarty, A. S., Kleiger, G., Eisenberg, D. and Smale, S. T. 2003. Selective dimerization of a C2H2 zinc finger subfamily. Mol. Cell 11:459-470 https://doi.org/10.1016/S1097-2765(03)00043-1
  28. Melniczek, J. R., Dambach, D., Prociuk, U., Jezyk, P. F., Henthorn, P. S., Patterson, D. F. and Giger, U. 1999. Sry-negative XX sex reversal in a family of Norwegian Elkhounds. J. Vet. Intern. Med. 13:564-569 https://doi.org/10.1892/0891-6640(1999)013<0564:SNXSRI>2.3.CO;2
  29. Nagai, K. 2001. Molecular evolution of Sry and Sox gene. Gene 270:161-169 https://doi.org/10.1016/S0378-1119(01)00479-6
  30. Palmer, M. S., Berta, P., Sinclair, A. H., Pyrn, B. and Goodfellow, P. N. 1990. Comparison of human ZFY and ZFX transcripts. Proc. Natl. Acad. Sci. U.S.A. 87:1681-1685 https://doi.org/10.1073/pnas.87.5.1681
  31. Phua, A. C., Abdullah, R. B. and Mohamed, Z. 2003. A PCR-based sex determination method for possible application in caprine gender selection by simultaneous amplification of the Sry and Am/-X genes. J. Reprod. Dev. 49:307-311 https://doi.org/10.1262/jrd.49.307
  32. Pollevick, G. D., Giambiagi, S., Mancardi, S., de Luca, L., Burrone, O., Frasch, A. C. and Ugalde, R. A. 1992. Sex determination of bovine embryos by restriction fragment polymorphisms of PCR amplified ZFX / ZFY loci. Biotechnology 10:805-807 https://doi.org/10.1038/nbt0792-805
  33. Poloumienko, A. 2004. Cloning and comparative analysis of the bovine, porcine, and equine sex chromosome genes ZFX and ZFY. Genome 47: 74-83 https://doi.org/10.1139/g03-099
  34. Pomp, D., Good, B. A., Geisert, R. D., Corbin, C. J. and Conley, A. J. 1995. Sex identification in mammals with polymerase chain reaction and its use to examine sex effects on diameter of day-10 or -11 pig embryos. J. Anim. Sci. 73:1408-1415
  35. Quilter, C. R., Blott, S. C., Mileham, A. J., Affara, N. A., Sargent, C. A. and Griffin, D. K. 2002. A mapping and evolutionary study of porcine sex chromosome genes. Mamm. Genome 13:588-594 https://doi.org/10.1007/s00335-002-3026-1
  36. Rens, W., Yang, F., Welch, G., Revell, S., O'Brien, P. C., Solanky, N., Johnson, L. A. and Ferguson Smith, M. A. 2001. An X-Y paint set and sperm FISH protocol that can be used for validation of cattle sperm separation procedures. Reproduction 121:541-546 https://doi.org/10.1530/rep.0.1210541
  37. Sathasivam, K., Kageyama, S., Chikuni, K. and Notarianni, E. 1995. Sex determination in the domestic pig by DNA amplification using the HMG-box sequence. Anim. Reprod. 38:321-326 https://doi.org/10.1016/0378-4320(94)01371-R
  38. Shiue, Y. -L., Millon, L. V., Skow, L. C., Honeycutt, D., Murray, J. D. and Bowling, A. T. 2000. Synteny and regional marker order assignment of 26 type I and microsatellite markers to the horse X- and Y-chromosomes. Chromosome Res. 8:45-55 https://doi.org/10.1023/A:1009275102977
  39. Sinclair, A. H., Berta, P., Palmer, M. S., Hawkins, J. R., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A. -M., Lovell-Badge, R. and Goodfellow, P. N. 1990. A gene from the human sex-determining region Y encodes a protein with a homology to a conserved DNA-binding motif. Nature 346:240-244 https://doi.org/10.1038/346240a0
  40. Staessen, C., van Assche, E., Joris, H., Bonduelle, M., Vandervorst, M., Liebaers, I. and Van Steirteghem, A. 1999. Clinical experience of sex determination by fluorescent in-situ hybridization for preimplantation genetic diagnosis. Mol. Hum. Reprod. 5:382-389 https://doi.org/10.1093/molehr/5.4.382
  41. Thomsen, P. D., Hindkjaer, J. and Christensen, K. 1992. Assignment of a porcine male-specific DNA repeat to Y -chromosomal heterochromatin. Cytogenet. Cell Genet. 61:152-154 https://doi.org/10.1159/000133395
  42. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  43. Tomomasa, H., Adachi, Y., Iwabuchi, M., Tohyama, Y., Yotsukura, M., Oshio, S., Yazaki, T., Umeda, T., Takano, T., Yamanouchi, Y. and Nakahori, Y. 1999. XX-male syndrome bearing the sex-determining region Y. Arch. Androl. 42:89-96 https://doi.org/10.1080/014850199262922
  44. Valetto A, Bertini V, Rapalini E, Simi P. 2005. A 46, XX SRY-negative man with complete virilization and infertility as the main anomaly. Fertil. Steril. 83:216-219 https://doi.org/10.1016/j.fertnstert.2004.06.055
  45. White, K. L., Anderson, G. B., Berger, T. J., BonDurant, R. H. and Pashen, R. L. 1987. Identification of a male-specific histocompatibility protein on preimplantation porcine embryos. Gamete Res. 17: 107-113 https://doi.org/10.1002/mrd.1120170203
  46. Yang, H., Fries, R. and Stranzinger, G. 1993. The sex-determining region Y(SRY) gene is mapped to p12-p13 of the Y chromosome in pig(Sus scrofa domestica) by in situ hybridization. Anim. Genet. 24:297-300 https://doi.org/10.1111/j.1365-2052.1993.tb00315.x
  47. Zenteno, J. C., Carranza-Lira, S., Jimenez, A. L. and Kofman, S. 2003. A de novo phe671eu mutation in the SRY gene in a patient with complete 46, XY gonadal dysgenesis. J. Endocrinol. Invest. 26:1117-1119
  48. 김용준, 정구남, 이해이, 조성우, 김용수, 유일정. 2000. 한우 체외수정란 biopsy 후 PCR 기법을 이용한 성 판정과 성감별 수정란의 이식. 한국수정란이식학회지 15:219-230
  49. 오성종, 양보석, 임경순. 1996. PCR 기법에 의한 수정란의 성 판별과 체외수정란의 발생속도가 성비에 미치는 영향. 한국가축번식학회지 2:443-451
  50. 유일정, 김용준, 이경광. 1999. 햄스터 H-Y 항체와 중합효소연쇄반응을 이용한 소 수정란의 성감별. 대한수의학회지 39:189-203

Cited by

  1. Sex Identification of Bovine Meat Using Male Specific SRY and ZFY Genes vol.27, pp.3, 2007, https://doi.org/10.5851/kosfa.2007.27.3.351
  2. ) and their application for sex determination in pigs vol.75, pp.11, 2008, https://doi.org/10.1002/mrd.20903
  3. A Quantitative Real-Time PCR Method Using an X-Linked Gene for Sex Typing in Pigs vol.54, pp.2, 2013, https://doi.org/10.1007/s12033-012-9589-5