• 제목/요약/키워드: Yttria-tetragonal zirconia polycrystal (Y-TZP)

검색결과 18건 처리시간 0.025초

3Y-TZP의 기계적 물성에 미치는 영향: (I) 단사정지르코니아의 첨가 (Effect on Mechanical Properties of 3Y-TZP; (I) Addition of Monoclinic Zirconia)

  • 양성구;배경만;조범래;강종봉
    • 한국세라믹학회지
    • /
    • 제42권6호
    • /
    • pp.411-416
    • /
    • 2005
  • Y-TZP(Yttria-stabilized Tetragonal Zirconia Polycrystal) ceramics are of great interest as engineering and structural materials due to their excellent mechanical properties arising from transformation toughening, it is also reported that the 3Y-TZP($3 mol\%$ Yttria-stabilized Tetragonal Zirconia Polycrystal) has the best mechanical properties in Y-TZP ceramics. But to use widely for engineering and structural materials, it remains an important challenge to be able to improve its fracture toughness. In order to produce the 3Y- TZP ceramics showing much better mechanical properties, milling method adding monoclinic zirconia to 3Y-TZP was adopted and the resultant mechanical properties containing apparent density and fracture toughness were measured by using proper techniques. Experimental results showed that the 3Y-TZP specimen containing $33 wt\%$ of monoclinic zirconia, which was sintered at $1450^{\circ}C$, has the highest fracture toughness value of $11.38 MPa{\cdot}m^{1/2}$ which is three times higher than that of normal 3Y-TZP ceramics.

Glycothermal Synthesis and Characterization of 3Y-TZP Nanoparticles

  • Song, Jeong-Hwan;Lee, Ju-Hee
    • 한국재료학회지
    • /
    • 제19권8호
    • /
    • pp.412-416
    • /
    • 2009
  • In this study, 3 mol% yttria-tetragonal zirconia polycrystal (3Y-TZP) nanoparticles were synthesized by the glycothermal method under various reaction temperatures and times. The co-precipitated precursor of 3Y-TZP was prepared by adding $NH_4OH$ to starting solutions, and then the mixtures were placed in an autoclave reactor. Tetragonal yttria-doped zirconia nanoparticles were afforded through a glycothermal reaction at a temperature as low as $220^{\circ}C$, using co-precipitated gels of $ZrCl_4$ and $YCl_3{\cdot}6H_2O$ as precursors and 1,4-butanediol as the solvent. The synthesized 3Y-TZP particles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy. The 3Y-TZP particles have a stable tetragonal phase only at glycothermal temperatures above $200^{\circ}C$. To investigate phase transition, the 3Y-TZP particles were heat treated from 400 to $1400^{\circ}C$ for 2 h. Raman analysis indicated that, after heat treatment, the tetragonal phase of the 3Y-TZP particles remained stable. The results of this study, therefore, suggest that 3Y-TZP powders can be prepared by the glycothermal method.

Simulated occlusal adjustments and their effects on zirconia and antagonist artificial enamel

  • Alfrisany, Najm Mohsen;Shokati, Babak;Tam, Laura Eva;De Souza, Grace Mendonca
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권3호
    • /
    • pp.162-168
    • /
    • 2019
  • PURPOSE. The aim of this study was to evaluate the effect of occlusal adjustments on the surface roughness of yttria-tetragonal zirconia polycrystal (Y-TZP) and wear of opposing artificial enamel. MATERIALS AND METHODS. Twenty-five Y-TZP slabs from each brand (Lava, 3M and Bruxzir, Glidewell Laboratories) with different surface conditions (Control polished - CPZ; Polished/ground - GRZ; Polished/ground/repolished - RPZ; Glazed - GZ; Porcelain-veneered - PVZ; n=5) were abraded (500,000 cycles, 80 N) against artificial enamel (6 mm diameter steatite). Y-TZP roughness (in ${\mu}m$) before and after chewing simulation (CS) and antagonist steatite volume loss (in $mm^3$) were evaluated using a contact surface profilometer. Y-TZP roughness was analyzed by three-way analysis of variance (ANOVA) and steatite wear by two-way ANOVA and Tukey Honest Difference (HSD) (P=.05). RESULTS. There was no effect of Y-TZP brand on surface roughness (P=.216) and steatite loss (P=.064). A significant interaction effect (P<.001) between surface condition and CS on Y-TZP roughness was observed. GZ specimens showed higher roughness after CS (before CS - $3.7{\pm}1.8{\mu}m$; after CS - $13.54{\pm}3.11{\mu}m$), with partial removal of the glaze layer. Indenters abraded against CPZ ($0.09{\pm}0.03mm^3$) were worn more than those abraded against PVZ ($0.02{\pm}0.01mm^3$) and GZ ($0.02{\pm}0.01mm^3$). Higher wear caused by direct abrasion against zirconia was confirmed by SEM. CONCLUSION. Polishing with an intraoral polishing system did not reduce the roughness of zirconia. Wear of the opposing artificial enamel was affected by the material on the surface rather than the finishing technique applied, indicating that polished zirconia is more deleterious to artificial enamel than are glazed and porcelain-veneered restorations.

Y-TZP에서 표면 처리에 따른 저온열화 거동의 직접적 관찰 (Direct Observation on the Low Temperature Degradation Due to Surface Treatment in Y-TZP)

  • 정태주;김혜성
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.197-202
    • /
    • 2010
  • Low temperature degradation behavior in yttria stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics was microscopically observed from the phase contrast between monoclinic surface and tetragonal matrix. The degradation behavior was dependent on the surface treatment of sintered Y-TZP, even if the sintering history is same. In the mirror polished specimen, the monoclinic layer appeared in a uniform thickness from the surface. On the contrary, for the specimen with coarse scratch, the thickness of degraded surface was more than double especially from the coarse scratch. Since the scratch results in local deformation, the residual stress should be induced around the scratch. With the transformation from tetragonal to monoclinic, the volume expansion exerts a stress on a neighboring grains and promotes a successive phase transformation. Such a autocatalytic effect can be triggered from the part of coarse scratch.

Effect of Different Surface Treatment on the Shear Bond Strength between Yttria-Tetragonal Zirconia Polycrystal and Non-10-Methacryloyloxydecyl Dihydrogen Phosphate-Containing Resin Cement

  • Lee, Yoon;Yi, Young-Ah;Kim, Sin-Young;Seo, Deog-Gyu
    • Journal of Korean Dental Science
    • /
    • 제7권2호
    • /
    • pp.49-57
    • /
    • 2014
  • Purpose: To evaluate the effect of different surface treatment methods (yttria-tetragonal zirconia polycrystal [Y-TZP] primers, air-abrasion, and tribochemical surface treatment) on the shear bond strength between (Y-TZP) ceramics and etch-and-rinse non-10-methacryloyloxydecyl dihydrogen phosphate (MDP)-containing resin cements. Materials and Methods: Y-TZP ceramic surfaces were ground flat with 600-grit silicone carbide abrasives paper and then divided into seven groups of ten. They were treated as the following: untreated (control), Monobond Plus (IvoclarVivadent), Z-PRIME Plus (Bisco Inc.), ESPE Sil with CoJet (3M ESPE), air-abrasion, Monobond Plus with air-abrasion, and Z-PRIME Plus with air-abrasion. The surface of Y-TZP specimens was analyzed under a scanning electron microscope (SEM). Non-MDP-containing cements were placed on the surface-treated Y-TZP specimens. After thermocycling, shear bond strength test was performed. Bond strength values were statistically analyzed using one-way analysis of variance and Student-Newman-Keuls multiple comparison test (P<0.05). Result: The Z-PRIME Plus treatment in combination with air-abrasion produced the highest bond strength ($14.94{\pm}1.70MPa$) followed by Monobond Plus combined with air-abrasion ($10.70{\pm}1.71MPa$), air-abrasion ($10.47{\pm}1.60MPa$), ESPE Sil after CoJet treatment ($10.38{\pm}0.87MPa$), Z-PRIME Plus application ($10.00{\pm}1.70MPa$), and then Monobond Plus application ($9.25{\pm}0.86MPa$). The control ($6.70{\pm}1.49MPa$) indicated the lowest results (P<0.05). The SEM results showed different surface morphologies according to surface treatment methods compared with the Y-TZP control. Conclusion: The shear bond strength between the Y-TZP ceramic and the non-MDP-containing resin cement was the greatest when the surface was treated with air-abrasion and MDP-containing Z-PRIME Plus primer.

3Y-TZP의 기계적 특성에 미치는 산화물 조성 및 첨가제의 영향 (Effects of Composition and Additives on the Mechanical Characteristics of 3Y-TZP)

  • 박미정;양성구;강종봉
    • 한국세라믹학회지
    • /
    • 제43권10호
    • /
    • pp.640-645
    • /
    • 2006
  • Monoclinic zirconia and yttria were mixed with a stoichiometric composition of 3Y-TZP (3 mol% Yttria-stabilized Tetragonal Zirconia Polycrystal). The specimen was sintered at 1350$\sim$1450$^{\circ}C$ and mechanical characterization and microstructure analysis were conducted. Microhardness and fracture toughness were shown as 1357.4 Hv and 8.56 MPa $m^{1/2}$. respectively. Without alumina, they were 1311 Hv and 10.02 MPa $m^{1/2}$ respectively. By mixing two different oxides, it was possible to obtain high values of microhardness and fracture toughness. It was possible that was turned out nano-scale particle using the co-milling of high mechanical energy.

저온열화현상이 지르코니아 코어와 전장도재의 전단결합강도에 미치는 영향 (Influence of Low Temperature Degradation on Bond Strength of Yttria-Stabilized Tetragonal Zirconia Polycrystal Core to Veneering Ceramic)

  • 김기백;김재홍
    • 치위생과학회지
    • /
    • 제14권1호
    • /
    • pp.29-34
    • /
    • 2014
  • 본 연구는 최근 심미보철물 제작에 널리 사용되는 지르코니아의 저온열화가 수복물의 안정성 및 내구성에 영향을 미치는 여부를 확인하기 위하여 전단결합강도를 측정하였다. 디스크 형태의 시편을 각각 7개씩 제작한 후 전장도재를 축성하여, ISO 13356 규격에 의거한 조건으로 고압증기 멸균기에 저온열화의 정도를 조절하기 위하여 3, 5, 10시간 동안 수열처리를 진행하였다. 제한된 조건하에 시행된 실험을 통해 전단결합강도를 확인하였으며, 측정 후 파절양상을 관찰 하였다. 저온열화 처리 전후의 시편에 대한 전단결합강도의 변화는 각 실험군별 유의한 차이가 있었다(p<0.05). 10시간을 저온열화 처리한 시편이 가장 낮은 전단결합강도로 나타났으며, 처리시간이 길어질수록 전단결합강도가 낮아지는 경향을 보였다. 파절 양상으로 저온열화 처리를 하지 않은 시편에서 응집성 파절을 보였으며, 저온열화 처리가 길어질수록 혼합형 파절 경향으로 전환되었다. 결론적으로 본 연구는 저온열화 현상이 진행될수록 지르코니아 코어와 전장도재 간의 결합강도가 낮아지는 경향을 확인하였다. 본 실험결과를 토대로 치과용 지르코니아를 이용한 보철물 제작과정과 환자에게 장착 후 안정적인 사용을 위하여 저온열화 현상에 대한 주의가 필요할 것으로 생각된다.

치과용 지르코니아의 광학적 성질에 영향을 미치는 요소에 대한 문헌고찰 (Review on factors affecting the optical properties of dental zirconia)

  • 박찬호;고경호;박찬진;조리라;허윤혁
    • 구강회복응용과학지
    • /
    • 제37권4호
    • /
    • pp.177-185
    • /
    • 2021
  • 기존의 3 mol%의 이트라아(Y2O3)로 안정화된 정방정 지르코니아(3 mol% yttria stabilized tetragonal zirconia polycrystal, 3Y-TZP) 뿐만 아니라 이트리아 함량이 증가된 반투명 지르코니아(translucent zirconia)를 이용한 단일구조 지르코니아 보철물의 사용이 증가하면서 치과용 지르코니아의 광학적 성질에 영향을 미치는 요소에 대한 연구가 지속적으로 이루어지고 있다. 이트리아 함량, 보철물 두께, 소결과정, 연마 및 광택소성 그리고 치과용 시멘트 등과 같은 치과기공실 및 진료실 과정의 처리 방법에 따라 치과용 지르코니아의 광학적 효과가 다르게 나타난다. 이트리아 농도의 증가는 반투명도의 개선과 동시에 차폐효과의 감소를 유발할 수 있으며 수복물 두께가 증가할수록 반투명도는 감소하지만 지르코니아 블록의 물성에 따라 요구되는 두께가 다르므로 주의해야 한다. 고속소결 방식은 제작시간을 단축시키나 경우에 따라 보철물의 반투명도가 감소할 수 있다. 지르코니아의 표면거칠기 및 광택소성 처리에 따라 광학적 결과도 영향을 받을 수 있다. 적절한 유색 시멘트의 사용은 지르코니아의 차폐효과에 도움이 되어 보다 자연스러운 보철치료가 가능하다.

Effects of Light-Curing on the Immediate and Delayed Micro-Shear Bond Strength between Yttria-Tetragonal Zirconia Polycrystal Ceramics and Universal Adhesive

  • Lee, Yoon;Woo, Jung-Soo;Eo, Soo-Heang;Seo, Deog-Gyu
    • Journal of Korean Dental Science
    • /
    • 제8권2호
    • /
    • pp.82-88
    • /
    • 2015
  • Purpose: To evaluate the effect of light-curing on the immediate and delayed micro-shear bond strength (${\mu}SBS$) between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and RelyX Ultimate when using Single Bond Universal (SBU). Materials and Methods: Y-TZP ceramic specimens were ground with #600-grit SiC paper. SBU was applied and RelyX Ultimate was mixed and placed on the Y-TZP surface. The specimens were divided into three groups depending on whether light curing was done after adhesive (SBU) and resin cement application: uncured after adhesive and uncured after resin cement application (UU); uncured after adhesive, but light cured after resin cement (UC); and light cured after adhesive and light cured resin cement (CC). The three groups were further divided depending on the timing of ${\mu}SBS$ testing: immediate at 24 hours (UUI, UCI, CCI) and delayed at 4 weeks (UUD, UCD, CCD). ${\mu}SBS$ was statistically analyzed using one-way ANOVA and Student-Newman-Keuls multiple comparison test (P<0.05). The surface of the fractured Y-TZP specimens was analyzed under a scanning electron microscope (SEM). Result: At 24 hours, ${\mu}SBS$ of UUI group ($8.60{\pm}2.06MPa$) was significantly lower than UCI group ($25.71{\pm}4.48MPa$) and CCI group ($29.54{\pm}3.62MPa$) (P<0.05). There was not any significant difference between UCI and CCI group (P>0.05). At 4 weeks, ${\mu}SBS$ of UUD group ($24.43{\pm}2.88MPa$) had significantly increased over time compared to UUI group (P<0.05). The SEM results showed mixed failure in UCI and CCI group, while UUI group showed adhesive failure. Conclusion: Light-curing of universal adhesive before or after application of RelyX Ultimate resin cement significantly improved the immediate ${\mu}SBS$ of resin cement to air-abrasion treated Y-TZP surface. After 4 weeks, the delayed ${\mu}SBS$ of the non-light curing group significantly improved to the level of light-cured groups.

Fracture Toughness of 3Y-TZP Dental Ceramics by Using Vickers Indentation Fracture and SELNB Methods

  • Moradkhani, Alireza;Baharvandi, Hamidreza;Naserifar, Ali
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.37-48
    • /
    • 2019
  • The objective of this research is to analyze the fracture toughness of pure and silica co-doped yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) bioceramics containing 0.1 and 0.2 wt.% of alumina, and sintered at a temperature of $1500^{\circ}C$. Because of the relatively easy preparation of the test specimens and the high speed of testing, the Vickers indentation fracture (VIF) technique is more frequently used to evaluate the fracture toughness of biomaterials and hard biological tissues. The Young's modulus and hardness values were obtained by means of nanoindentation and indentation methods. The fracture toughness values of 3Y-TZP bioceramics were calculated and analyzed using 15 equations related to the VIF technique, and loadings of 49.03 and 196.13 N with a Vickers diamond. For validation, the results were compared with fracture toughness values obtained by the single-edge laser-notch beam (SELNB) method with an almost atomically sharp laser-machined initial notch.