Browse > Article
http://dx.doi.org/10.4191/kcers.2019.56.1.01

Fracture Toughness of 3Y-TZP Dental Ceramics by Using Vickers Indentation Fracture and SELNB Methods  

Moradkhani, Alireza (Art & Architecture Faculty, Yadegar-e Imam Khomeini (RAH) Shahre-Rey Branch, Islamic Azad University)
Baharvandi, Hamidreza (Faculty of Materials & Manufacturing Processes, Malek-Ashtar University of Technology)
Naserifar, Ali (Art & Architecture Faculty, Yadegar-e Imam Khomeini (RAH) Shahre-Rey Branch, Islamic Azad University)
Publication Information
Abstract
The objective of this research is to analyze the fracture toughness of pure and silica co-doped yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) bioceramics containing 0.1 and 0.2 wt.% of alumina, and sintered at a temperature of $1500^{\circ}C$. Because of the relatively easy preparation of the test specimens and the high speed of testing, the Vickers indentation fracture (VIF) technique is more frequently used to evaluate the fracture toughness of biomaterials and hard biological tissues. The Young's modulus and hardness values were obtained by means of nanoindentation and indentation methods. The fracture toughness values of 3Y-TZP bioceramics were calculated and analyzed using 15 equations related to the VIF technique, and loadings of 49.03 and 196.13 N with a Vickers diamond. For validation, the results were compared with fracture toughness values obtained by the single-edge laser-notch beam (SELNB) method with an almost atomically sharp laser-machined initial notch.
Keywords
Zirconia; Fracture toughness; Dental materials; Bioceramics;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 F. Egilmez, G. Ergun, I. Cekic-Nagas, P. K. Vallittu, and L. V. Lassila, "Factors Affecting the Mechanical Behavior of Y-TZP," J. Mech. Behave. Biomed. Mater., 37 78-87 (2014).   DOI
2 S. Tekeli, "Fracture Toughness ($K_{IC}$), Hardness, Sintering and Grain Growth Behavior of $8YSCZ/Al_2O_3$ Composites Produced by Colloidal Processing," J. Alloys Compd., 391 [1-2] 217-24 (2005).   DOI
3 C. Piconi and G. Maccauro, "Zirconia as a Ceramic Biomaterial," Biomaterials, 20 [1] 1-25 (1999).   DOI
4 J. Chevalier, L. Gremillard, and S. Deville, "Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants," Annu. Rev. Mater. Res., 37 1-32 (2007).   DOI
5 E. Camposilvan, F. Garcia Marro, A. Mestra, and M. Anglada, "Enhanced Reliability of Yttria-Stabilized Zirconia for Dental Applications," Acta Biomater., 17 36-46 (2015).   DOI
6 M. Majic Renjo, L. Curkovic, S. Stefancic, and D. Coric, "Indentation Size Effect of Y-TZP Dental Ceramics," Dent. Mater., 30 [12] 371-76 (2014).   DOI
7 A. Sakar-Deliormanli and M. Guden, "Microhardness and Fracture Toughness of Dental Materials by Indentation Method," J. Biomed. Mater. Res., Part B, 76 [2] 257-64 (2006).   DOI
8 J. J. Kruzic, D. K. Kim, K. J. Koester, and R. O. Ritchie, "Indentation Techniques for Evaluating the Fracture Toughness of Biomaterials and Hard Tissues," J. Mech. Behav. Biomed. Mater., 2 [4] 384-95 (2009).   DOI
9 L. P. Mullins, M. S. Bruzzi, and P. E. McHugh, "Measurement of the Microstructural Fracture Toughness of Cortical Bone Using Indentation Fracture," J. Biomech., 40 [14] 3285-88 (2007).   DOI
10 A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen, "Determination of Fracture Toughness Using the Area of Micro-Crack Tracks Left in Brittle Materials by Vickers Indentation Test," J. Adv. Ceram., 2 87-102 (2013).   DOI
11 G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements," J. Am. Ceram. Soc., 64 [9] 533-38 (1981).   DOI
12 ASTM C769-98, Standard Test Method for Sonic Velocity in Manufactured Carbon and Graphite Materials for Use in Obtaining an Approximate Young's Modulus, ASTM International, West Conshohocken, PA, 1998.
13 A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, and M. Nganbe, "Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened $Al_2O_3$ and SiC Armor," J. Mater. Sci. Technol., 31 [8] 773-83 (2015).   DOI
14 S. Palmqvist, "The Work for the Formation of a Crack during Vickers Indentation as a Measure of the Toughness of Hard Metals," Arch. Eisenhuettenwes, 33 629-34 (1962).
15 M. W. Barsoum, Fundamentals of Ceramics; pp. 368-69, Taylor & Francis Group, New York, 2003.
16 J. D. Lin and J. G. Duh, "Fracture Toughness and Hardness of Ceria and Yttria-Doped Tetragonal Zirconia Ceramics," Mater. Chem. Phys., 78 [1] 253-61 (2002).   DOI
17 K. K. Bamzai, P. N. Kotru, and B. M. Wanklyn, "Fracture Mechanics, Crack Propagation and Microhardness Studies on Flux Grown $ErAlO_3$ Single Crystals," J. Mater. Sci. Technol., 16 [04] 405-10 (2000).
18 M. Bhat, B. Kaur, R. Kumar, K. K. Bamzai, P. N. Kotru, B. M. Wanklyn, "Effect of Ion Irradiation on Dielectric and Mechanical Characteristics of $ErAlO_3$ Single Crystals," Nucl. Instrum. Methods Phys. Res., Sect. B, 234 [4] 494-508 (2005).   DOI
19 B. R. Lawn, A. G. Evans, and D. B. Marshall, "Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System," J. Am. Ceram. Soc., 63 [9-10] 574-81 (1980).   DOI
20 K. Harada, A. Shinya, D. Yokoyama, and A. Shinya, "Effect of Loading Conditions on the Fracture Toughness of Zirconia," J. Prosthodont. Res., 57 [2] 82-87 (2013).   DOI
21 I. Sailer, J. Gottnerb, S. Kanelb, and C. H. Hammerle, "Randomized Controlled Clinical Trial of Zirconia-Ceramic and Metal-Ceramic Posterior Fixed Dental Prostheses: a 3-year Follow-Up," Int. J. Prosthodont., 22 [6] 553-60 (2009).
22 K. Kobayashi, H. Kuwajima, and T. Masaki, "Phase Change and Mechanical Properties of $ZrO_2-Y2O_3$ Solid Electrolyte after Ageing," Solid State Ionics, 3-4 489-95 (1981).   DOI
23 H. T. Kim, J. S. Han, J. H. Yang, J. B. Lee, and S. H. Kim, "The Effect of Low Temperature Aging on the Mechanical Property & Phase Stability of YTZP Ceramics," J. Adv. Prosthodont., 1 [3] 113-17 (2009).   DOI
24 G. Pharr, "Measurement of Mechanical Properties by Ultra-Low Load Indentation," Mater. Sci. Eng., A, 253 [1-2] 151-59 (1998).   DOI
25 A. Samodurova, A. Kocjan, M. V. Swain, and T. Kosmac, "The Combined Effect of Alumina and Silica Co-Doping on the Ageing Resistance of 3Y-TZP Bioceramics," Acta Biomater., 11 477-87 (2015).   DOI
26 European Standard DIN EN 1389:2003, Advanced Technical Ceramics, Ceramic Composites, Physical Properties-Determination of Density and Apparent Porosity (BSI 81.060.30 Publication, 1994; https://shop.bsigroup.com/en/ProductDetail/?pid=000000000000345631&_ga=2.10794420.1058334025.1539768367-258163731.1539768367).
27 W. C. Oliver and G. M. Pharr, "An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiment," J. Mater. Res., 7 [6] 1564-83 (1992).   DOI
28 H. D. Carlton, J. W. Elmer, D. C. Freeman, R. D. Schaeffer, O. Derkach, and G. F. Gallegos, "Laser Notching Ceramics for Reliable Fracture Toughness Testing," J. Eur. Ceram. Soc., 36 [1] 227-34 (2016).   DOI
29 J. Y. Pastor, "How to Measure the Real Fracture Toughness in Brittle Materials? Past, Present and Future Techniques"; in Proceeding of the International Conference on Experimental Mechanics (ICEM15). Porto, Portugal, 2012.
30 A. Moradkhani and H. Baharvandi, "Mechanical Properties and Fracture Behavior of $B_4C$-Nano/Micro SiC Composites Produced by Pressureless Sintering," Int. J. Refract. Met. Hard Mater., 70 107-15 (2018).   DOI
31 T. Palacios and J. Y. Pastor, "Influence of the Notch Root Radius on the Fracture Toughness of Brittle Metals: Nanostructure Tungsten Alloy, a Case Study," Int. J. Refract. Met. Hard Mater., 52 44-9 (2015).   DOI
32 A. G. Evans and T. R. Wilshaw, "Quasi-Static Solid Particle Damage in Brittle Solid-I. Observation Analysis and Implications," Acta Metall., 24 [10] 939-56 (1976).   DOI
33 G. D. Quinn and R. C. Bradt, "On the Vickers Indentation Fracture Toughness Test," J. Am. Ceram. Soc., 90 [3] 673-80 (2007).   DOI
34 K. Niihara, "A Fracture Mechanics Analysis of Indentation-Induced Palmqvist Crack in Ceramic," J. Mater. Sci. Lett., 2 [5] 221-23 (1983).   DOI
35 H. R. Lawn and E. R. Fuller, "Equilibrium Penny-Like Cracks in Indentation Fracture," J. Mater. Sci., 10 [12] 2016-24 (1975).   DOI
36 M. T. Laugier, New formula for indentation toughness in ceramics. J. Mater. Sci. Lett., 6 355-6 (1987).   DOI
37 A. G. Evans and E. A. Charles, "Fracture Toughness Determinations by Indentation," J. Am. Ceram. Soc., 59 [7-8] 371-72 (1976).   DOI
38 D. K. Shetty, I. G. Wright, P. N. Mincer, and A. H. Cluar, "Indentation Fracture of WC-Co Cermets," J. Mater. Sci., 20 [5] 1873-82 (1985).   DOI
39 A. G. Evans, Fracture Toughness: the Role of Indentation Techniques; ASTM Special Technical Publication, 1979.
40 JIS R. 1607, "Testing methods for fracture toughness of high performance ceramics," Japanese Standard Association (1990).
41 S. K. Yang, K. M. Bae, B. R. Cho, and J. B. Kang, "Effect on Mechanical Properties of 3Y-TZP; (I) Addition of Monoclinic Zirconia," J. Korean Ceram. Soc., 42 [6] 411-16 (2005).   DOI
42 A. Moradkhani and H. Baharvandi, "Determining the Fracture Resistance of $B_4C-NanoSiB_6$ Nanocomposite by Vickers Indentation Method and Exploring its Mechanical Properties," Int. J. Refract. Met. Hard Mater., 68 159-65 (2017).   DOI
43 E. S. Elshazly, S. M. El-Hout, and M. El-Sayed Ali, "Yttria Tetragonal Zirconia Biomaterials: Kinetic Investigation," J. Mater. Sci. Technol., 27 [4] 332-37 (2011).   DOI
44 M. Guazzato, M. Albakry, S. P. Ringer, and M. V. Swain, "Strength, Fracture Toughness and Microstructure of a Selection of All-Ceramic Materials: Part II. Zirconia- Based Dental Ceramics," Dent. Mater., 20 [5] 4449-56 (2004).
45 K. Matsui, T. Yamakawa, M. Uehara, N. Enomoto, and J. Hojo, "Mechanism of Alumina-Enhanced Sintering of Fine Zirconia Powder: Influence of Alumina Concentration on the Initial Stage Sintering," J. Am. Ceram. Soc., 91 [6] 1888-97 (2008).   DOI
46 M. J. Park, S. K. Yang, and J. B. Kang, "Effects of Composition and Additives on the Mechanical Characteristics of 3Y-TZP," J. Korean Ceram. Soc., 43 [10] 640-45 (2006).   DOI
47 H. Fischer, A. Waindich, and R. Telle, "Influence of Preparation of Ceramic SEVNB Specimens on Fracture Toughness Testing Results," Dent. Mater., 24 618-22 (2008).   DOI
48 G. K. R. Pereira, A. B. Venturini, T. Silvestri, K. S. Dapieve, A. F. Montagner, F. Z. M. Soares, and L. F. Valandro, "Lowtemperature Degradation of Y-TZP Ceramics: A Systematic Review and Meta-Analysis," J. Mech. Behav. Biomed. Mater., 55 151-63 (2015).   DOI
49 S. W. Freimann, "Brittle Fracture Behavior of Ceramics," Am Ceram Soc. Bull., 67 [2] 392-402 (1988).
50 R. F. Pabst, K. Kromp, and G. Popp, "Fracture Toughness-Measurement and Interpretation," Proc. Br. Ceram. Soc., 32 89-94 (1982).
51 A. Kailer and S. Marc, "On the Feasibility of the Chevron Notch Beam Method to Measure Fracture Toughness of Fine-Grained Zirconia Ceramics," Dent. Mater., 32 [10] 1256-62 (2016).   DOI
52 G. A. Gogotsi, "Fracture Toughness of Ceramics and Ceramic Composites," Ceram. Int., 29 777-84 (2003).   DOI
53 G. V. Guinea, J. Y. Pastor, J. Planas, and M. Elices, "Stress Intensity Factor, Compliance and CMOD for a General Three-Point-Bend Beam," Int. J. Fract., 89 [2] 103-16 (1998).   DOI
54 J. Y. Pastor, J. LLorca, A. Martín, J. I. Pena, and P. B. Oliete, "Fracture Toughness and Strength of $Al_2O_3-Y_3Al_5O_{12}\;and\;Al_2O_3-Y_3Al_5O_{12}-ZrO_2$ Directionally Solidified Eutectic Oxides up to 1900K," J. Eur. Ceram. Soc., 28 [12] 2345-51 (2008).   DOI
55 R. Damani, R. Gstrein, and R. Danzer, "Critical Notch-Root Radius Effect in SENB-S Fracture Toughness Testing," J. Eur. Ceram. Soc., 16 [7] 695-702 (1996).   DOI
56 T. Nishida, Y. Hanaki, and G. Pezzotti, "Effect of Notch-Root Radius on the Fracture Toughness of a Fine-Grained Alumina," J. Am. Ceram. Soc., 77 [2] 606-8 (1994).   DOI
57 L. Gremillard, J. Chevalier, T. Epicier, and G. Fantozzi, "Improving the Durability of a Biomedical-Grade Zirconia Ceramic by the Addition of Silica," J. Am. Ceram. Soc., 85 [2] 401-7 (2002).   DOI
58 L. Gremillard, T. Epicier, J. Chevalier, and G. Fantozzi, "Microstructural Study of Silica-Doped Zirconia Ceramics," Acta Mater., 48 [18-19] 4647-52 (2000).   DOI
59 K. Fan, J. Y. Pastor, J. Ruiz-Hervias, J. Gurauskis, and C. Baudin, "Determination of Mechanical Properties of $Al_2O_3$/Y-TZP Ceramic Composites: Influence of Testing Method and Residual Stresses," Ceram. Int., 42 [16] 18700-10 (2016).   DOI
60 J. Lankford, "Indentation Microfracture in the Palmqvist Crack Regime: Implications for Fracture Toughness Evaluation by the Indentation Method," J. Mater. Sci. Lett., 1 [11] 493-95 (1982).   DOI
61 K. Niihara, R. Morena, and D. P. H. Hasselman, "Evaluation of KIC of Brittle Solids by the Indentation Method with Low Crack-to-Indent Ratios," J. Mater. Sci. Lett., 1 [1] 13-6 (1982).   DOI
62 E. Mahoney, A. Holt, M. Swain, and N. Kilpatrick, "The Hardness and Modulus of Elasticity of Primary Molar Teeth: an Ultra-Microindentation Study," J. Dent., 28 589-94 (2000).   DOI
63 H. Yilmaz, C. Aydin, and B. E. Gul, "Flexural Strength and Fracture Toughness of Dental Core Ceramics," J. Prosthet. Dent., 98 [2] 120-28 (2007).   DOI
64 I. Denry and J. R. Kelly, "State of the Art of Zirconia for Dental Applications," Dent. Mater., 24 [3] 299-307 (2008).   DOI
65 I. L. Denry and J. A. Holloway, "Elastic Constants, Vickers Hardness, and Fracture Toughness of Fluorrichterite-Based Glass-Ceramics," Dent. Mater., 20 213-19 (2004).   DOI
66 M. A. Garrido, I. Giraldez, L. Ceballos, and J. Rodriguez, "On the Possibility of Estimating the Fracture Toughness of Enamel," Dent. Mater., 30 1224-33 (2014).   DOI
67 H. Fischer and R. Marx, "Fracture Toughness of Dental Ceramics: Comparison of Bending and Indentation Method," Dent. Mater., 18 12-19 (2002).   DOI
68 M. Szutkowska, "Fracture Resistance Behavior of Alumina-Zirconia Composites," J. Mater. Process. Technol., 153 [1] 868-74 (2004).   DOI
69 J. Xu, D. Tang, K. J. Lee, H. B. Lim, K.-S. Park, and W. Cho, "Comparison of Fracture Toughness Evaluating Methods in 3Y-TZP Ceramics Reinforced with $Al_2O_3$ Particles," J. Ceram. Process. Res., 13 [6] 83-7 (2012).
70 W. H. Tuan, R. Z. Chen, T. C. Wang, C. H. Cheng, and P. S. Kuo, Mechanical Properties of $Al_2O_3/ZrO_2$ Composites," J. Eur. Ceram. Soc., 22 [16] 2827-33 (2002).   DOI
71 A. Moradkhani, H. Baharvandi, and M. M. M. Samani, "Mechanical Properties and Microstructure of $B_4C$-Nano-$TiB_2$-Fe/Ni Composites under Different Sintering Temperatures," Mater. Sci. Eng. A, 665 141-53 (2016).   DOI
72 H. Latifi, A. Moradkhani, H. Baharvandi, and J. Martikainen, "Fracture Toughness Determination and Microstructure Investigation of a $B_4C-NanoTiB_2$ Composite with Various Volume Percent of Fe and Ni Additives," Mater. Des., 62 392-400 (2014).   DOI
73 A. Moradkhani and H. Baharvandi, "Analyzing the Microstructures of W-ZrC Composites Fabricated through Reaction Sintering and Determining their Fracture Toughness Values by Using the SENB and VIF Methods," Eng. Fract. Mech., 189 501-13 (2018).   DOI
74 A. Moradkhani and H. Baharvandi, "Effects of Additive Amount, Testing Method, Fabrication Process and Sintering Temperature on the Mechanical Properties of $Al_2O_3$/3Y-TZP Composites," Eng. Fract. Mech., 191 446-60 (2018).   DOI