• Title/Summary/Keyword: Yttria-tetragonal zirconia polycrystal (Y-TZP)

Search Result 18, Processing Time 0.03 seconds

Effect on Mechanical Properties of 3Y-TZP; (I) Addition of Monoclinic Zirconia (3Y-TZP의 기계적 물성에 미치는 영향: (I) 단사정지르코니아의 첨가)

  • Yang, Seong-Koo;Bae, Kyung-Man;Cho, Bum-Rae;Kang, Jong-Bong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.411-416
    • /
    • 2005
  • Y-TZP(Yttria-stabilized Tetragonal Zirconia Polycrystal) ceramics are of great interest as engineering and structural materials due to their excellent mechanical properties arising from transformation toughening, it is also reported that the 3Y-TZP($3 mol\%$ Yttria-stabilized Tetragonal Zirconia Polycrystal) has the best mechanical properties in Y-TZP ceramics. But to use widely for engineering and structural materials, it remains an important challenge to be able to improve its fracture toughness. In order to produce the 3Y- TZP ceramics showing much better mechanical properties, milling method adding monoclinic zirconia to 3Y-TZP was adopted and the resultant mechanical properties containing apparent density and fracture toughness were measured by using proper techniques. Experimental results showed that the 3Y-TZP specimen containing $33 wt\%$ of monoclinic zirconia, which was sintered at $1450^{\circ}C$, has the highest fracture toughness value of $11.38 MPa{\cdot}m^{1/2}$ which is three times higher than that of normal 3Y-TZP ceramics.

Glycothermal Synthesis and Characterization of 3Y-TZP Nanoparticles

  • Song, Jeong-Hwan;Lee, Ju-Hee
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.412-416
    • /
    • 2009
  • In this study, 3 mol% yttria-tetragonal zirconia polycrystal (3Y-TZP) nanoparticles were synthesized by the glycothermal method under various reaction temperatures and times. The co-precipitated precursor of 3Y-TZP was prepared by adding $NH_4OH$ to starting solutions, and then the mixtures were placed in an autoclave reactor. Tetragonal yttria-doped zirconia nanoparticles were afforded through a glycothermal reaction at a temperature as low as $220^{\circ}C$, using co-precipitated gels of $ZrCl_4$ and $YCl_3{\cdot}6H_2O$ as precursors and 1,4-butanediol as the solvent. The synthesized 3Y-TZP particles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy. The 3Y-TZP particles have a stable tetragonal phase only at glycothermal temperatures above $200^{\circ}C$. To investigate phase transition, the 3Y-TZP particles were heat treated from 400 to $1400^{\circ}C$ for 2 h. Raman analysis indicated that, after heat treatment, the tetragonal phase of the 3Y-TZP particles remained stable. The results of this study, therefore, suggest that 3Y-TZP powders can be prepared by the glycothermal method.

Simulated occlusal adjustments and their effects on zirconia and antagonist artificial enamel

  • Alfrisany, Najm Mohsen;Shokati, Babak;Tam, Laura Eva;De Souza, Grace Mendonca
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.3
    • /
    • pp.162-168
    • /
    • 2019
  • PURPOSE. The aim of this study was to evaluate the effect of occlusal adjustments on the surface roughness of yttria-tetragonal zirconia polycrystal (Y-TZP) and wear of opposing artificial enamel. MATERIALS AND METHODS. Twenty-five Y-TZP slabs from each brand (Lava, 3M and Bruxzir, Glidewell Laboratories) with different surface conditions (Control polished - CPZ; Polished/ground - GRZ; Polished/ground/repolished - RPZ; Glazed - GZ; Porcelain-veneered - PVZ; n=5) were abraded (500,000 cycles, 80 N) against artificial enamel (6 mm diameter steatite). Y-TZP roughness (in ${\mu}m$) before and after chewing simulation (CS) and antagonist steatite volume loss (in $mm^3$) were evaluated using a contact surface profilometer. Y-TZP roughness was analyzed by three-way analysis of variance (ANOVA) and steatite wear by two-way ANOVA and Tukey Honest Difference (HSD) (P=.05). RESULTS. There was no effect of Y-TZP brand on surface roughness (P=.216) and steatite loss (P=.064). A significant interaction effect (P<.001) between surface condition and CS on Y-TZP roughness was observed. GZ specimens showed higher roughness after CS (before CS - $3.7{\pm}1.8{\mu}m$; after CS - $13.54{\pm}3.11{\mu}m$), with partial removal of the glaze layer. Indenters abraded against CPZ ($0.09{\pm}0.03mm^3$) were worn more than those abraded against PVZ ($0.02{\pm}0.01mm^3$) and GZ ($0.02{\pm}0.01mm^3$). Higher wear caused by direct abrasion against zirconia was confirmed by SEM. CONCLUSION. Polishing with an intraoral polishing system did not reduce the roughness of zirconia. Wear of the opposing artificial enamel was affected by the material on the surface rather than the finishing technique applied, indicating that polished zirconia is more deleterious to artificial enamel than are glazed and porcelain-veneered restorations.

Direct Observation on the Low Temperature Degradation Due to Surface Treatment in Y-TZP (Y-TZP에서 표면 처리에 따른 저온열화 거동의 직접적 관찰)

  • Chung, Tai-Joo;Kim, Hye-Sung
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2010
  • Low temperature degradation behavior in yttria stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics was microscopically observed from the phase contrast between monoclinic surface and tetragonal matrix. The degradation behavior was dependent on the surface treatment of sintered Y-TZP, even if the sintering history is same. In the mirror polished specimen, the monoclinic layer appeared in a uniform thickness from the surface. On the contrary, for the specimen with coarse scratch, the thickness of degraded surface was more than double especially from the coarse scratch. Since the scratch results in local deformation, the residual stress should be induced around the scratch. With the transformation from tetragonal to monoclinic, the volume expansion exerts a stress on a neighboring grains and promotes a successive phase transformation. Such a autocatalytic effect can be triggered from the part of coarse scratch.

Effect of Different Surface Treatment on the Shear Bond Strength between Yttria-Tetragonal Zirconia Polycrystal and Non-10-Methacryloyloxydecyl Dihydrogen Phosphate-Containing Resin Cement

  • Lee, Yoon;Yi, Young-Ah;Kim, Sin-Young;Seo, Deog-Gyu
    • Journal of Korean Dental Science
    • /
    • v.7 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • Purpose: To evaluate the effect of different surface treatment methods (yttria-tetragonal zirconia polycrystal [Y-TZP] primers, air-abrasion, and tribochemical surface treatment) on the shear bond strength between (Y-TZP) ceramics and etch-and-rinse non-10-methacryloyloxydecyl dihydrogen phosphate (MDP)-containing resin cements. Materials and Methods: Y-TZP ceramic surfaces were ground flat with 600-grit silicone carbide abrasives paper and then divided into seven groups of ten. They were treated as the following: untreated (control), Monobond Plus (IvoclarVivadent), Z-PRIME Plus (Bisco Inc.), ESPE Sil with CoJet (3M ESPE), air-abrasion, Monobond Plus with air-abrasion, and Z-PRIME Plus with air-abrasion. The surface of Y-TZP specimens was analyzed under a scanning electron microscope (SEM). Non-MDP-containing cements were placed on the surface-treated Y-TZP specimens. After thermocycling, shear bond strength test was performed. Bond strength values were statistically analyzed using one-way analysis of variance and Student-Newman-Keuls multiple comparison test (P<0.05). Result: The Z-PRIME Plus treatment in combination with air-abrasion produced the highest bond strength ($14.94{\pm}1.70MPa$) followed by Monobond Plus combined with air-abrasion ($10.70{\pm}1.71MPa$), air-abrasion ($10.47{\pm}1.60MPa$), ESPE Sil after CoJet treatment ($10.38{\pm}0.87MPa$), Z-PRIME Plus application ($10.00{\pm}1.70MPa$), and then Monobond Plus application ($9.25{\pm}0.86MPa$). The control ($6.70{\pm}1.49MPa$) indicated the lowest results (P<0.05). The SEM results showed different surface morphologies according to surface treatment methods compared with the Y-TZP control. Conclusion: The shear bond strength between the Y-TZP ceramic and the non-MDP-containing resin cement was the greatest when the surface was treated with air-abrasion and MDP-containing Z-PRIME Plus primer.

Effects of Composition and Additives on the Mechanical Characteristics of 3Y-TZP (3Y-TZP의 기계적 특성에 미치는 산화물 조성 및 첨가제의 영향)

  • Park, Mi-Jung;Yang, Seong-Koo;Kang, Jong-Bong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.640-645
    • /
    • 2006
  • Monoclinic zirconia and yttria were mixed with a stoichiometric composition of 3Y-TZP (3 mol% Yttria-stabilized Tetragonal Zirconia Polycrystal). The specimen was sintered at 1350$\sim$1450$^{\circ}C$ and mechanical characterization and microstructure analysis were conducted. Microhardness and fracture toughness were shown as 1357.4 Hv and 8.56 MPa $m^{1/2}$. respectively. Without alumina, they were 1311 Hv and 10.02 MPa $m^{1/2}$ respectively. By mixing two different oxides, it was possible to obtain high values of microhardness and fracture toughness. It was possible that was turned out nano-scale particle using the co-milling of high mechanical energy.

Influence of Low Temperature Degradation on Bond Strength of Yttria-Stabilized Tetragonal Zirconia Polycrystal Core to Veneering Ceramic (저온열화현상이 지르코니아 코어와 전장도재의 전단결합강도에 미치는 영향)

  • Kim, Ki-Baek;Kim, Jae-Hong
    • Journal of dental hygiene science
    • /
    • v.14 no.1
    • /
    • pp.29-34
    • /
    • 2014
  • The purpose of this study was to evaluate the influence of low temperature degradation (LTD) on the bonding strength of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP). The push-shear bond test method was used to investigate the core-veneer bonding strength of industrially manufactured Y-TZP core ceramic and manufacturer recommended veneering ceramic. Four groups from ceramic-zirconia specimens (n=28; n=7 per group) were assigned into four experimental aging conditions, namely storage in an autoclave at $134^{\circ}C$ for 0, 3, 5, 10 hours. Bonding strength was obtained using a universal testing machine with crosshead speed 0.5 mm/min. Data were statistically analyzed using one-way ANOVA and Tukey's test (${\alpha}=0.05$). In bonding strength test, the group which was treated with LTD showed lower bonding strength than no treated group. The ceramic-zirconia bonding strength was affected by LTD (p<0.05). Digital microscope examination of the fracture surface showed mixed failures with adhesive and cohesive types in LTD with treated Y-TZP groups.

Review on factors affecting the optical properties of dental zirconia (치과용 지르코니아의 광학적 성질에 영향을 미치는 요소에 대한 문헌고찰)

  • Park, Chan-Ho;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra;Huh, Yoon-Hyuk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.4
    • /
    • pp.177-185
    • /
    • 2021
  • Clinical applications of translucent zirconia as well as traditional zirconia (3 mol% yttria stabilized tetragonal zirconia polycrystal, 3Y-TZP) are increasing. For this reason, studies on factors affecting the optical properties of dental zirconia have been continuously reported. The optical effect of dental zirconia may vary depending on the yttria content, the thickness of the prosthesis, the sintering process, polishing, glazing and cementation in laboratory and clinical procedures. Increasing the yttria concentration can reduce the masking effect. Translucency decreases as the thickness of the restoration increases, but the required thickness may vary depending on the properties of the zirconia block. The high-speed sintering method can shorten the manufacturing time, but in some cases, the translucency of the prosthesis may decrease. In addition, the optical properties can be affected by the surface roughness of zirconia and the polishing process. The use of an appropriate colored cement can help with the masking effect of zirconia and can be useful for color matching for more esthetic results.

Effects of Light-Curing on the Immediate and Delayed Micro-Shear Bond Strength between Yttria-Tetragonal Zirconia Polycrystal Ceramics and Universal Adhesive

  • Lee, Yoon;Woo, Jung-Soo;Eo, Soo-Heang;Seo, Deog-Gyu
    • Journal of Korean Dental Science
    • /
    • v.8 no.2
    • /
    • pp.82-88
    • /
    • 2015
  • Purpose: To evaluate the effect of light-curing on the immediate and delayed micro-shear bond strength (${\mu}SBS$) between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and RelyX Ultimate when using Single Bond Universal (SBU). Materials and Methods: Y-TZP ceramic specimens were ground with #600-grit SiC paper. SBU was applied and RelyX Ultimate was mixed and placed on the Y-TZP surface. The specimens were divided into three groups depending on whether light curing was done after adhesive (SBU) and resin cement application: uncured after adhesive and uncured after resin cement application (UU); uncured after adhesive, but light cured after resin cement (UC); and light cured after adhesive and light cured resin cement (CC). The three groups were further divided depending on the timing of ${\mu}SBS$ testing: immediate at 24 hours (UUI, UCI, CCI) and delayed at 4 weeks (UUD, UCD, CCD). ${\mu}SBS$ was statistically analyzed using one-way ANOVA and Student-Newman-Keuls multiple comparison test (P<0.05). The surface of the fractured Y-TZP specimens was analyzed under a scanning electron microscope (SEM). Result: At 24 hours, ${\mu}SBS$ of UUI group ($8.60{\pm}2.06MPa$) was significantly lower than UCI group ($25.71{\pm}4.48MPa$) and CCI group ($29.54{\pm}3.62MPa$) (P<0.05). There was not any significant difference between UCI and CCI group (P>0.05). At 4 weeks, ${\mu}SBS$ of UUD group ($24.43{\pm}2.88MPa$) had significantly increased over time compared to UUI group (P<0.05). The SEM results showed mixed failure in UCI and CCI group, while UUI group showed adhesive failure. Conclusion: Light-curing of universal adhesive before or after application of RelyX Ultimate resin cement significantly improved the immediate ${\mu}SBS$ of resin cement to air-abrasion treated Y-TZP surface. After 4 weeks, the delayed ${\mu}SBS$ of the non-light curing group significantly improved to the level of light-cured groups.

Fracture Toughness of 3Y-TZP Dental Ceramics by Using Vickers Indentation Fracture and SELNB Methods

  • Moradkhani, Alireza;Baharvandi, Hamidreza;Naserifar, Ali
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.37-48
    • /
    • 2019
  • The objective of this research is to analyze the fracture toughness of pure and silica co-doped yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) bioceramics containing 0.1 and 0.2 wt.% of alumina, and sintered at a temperature of $1500^{\circ}C$. Because of the relatively easy preparation of the test specimens and the high speed of testing, the Vickers indentation fracture (VIF) technique is more frequently used to evaluate the fracture toughness of biomaterials and hard biological tissues. The Young's modulus and hardness values were obtained by means of nanoindentation and indentation methods. The fracture toughness values of 3Y-TZP bioceramics were calculated and analyzed using 15 equations related to the VIF technique, and loadings of 49.03 and 196.13 N with a Vickers diamond. For validation, the results were compared with fracture toughness values obtained by the single-edge laser-notch beam (SELNB) method with an almost atomically sharp laser-machined initial notch.