• 제목/요약/키워드: You only look once

검색결과 124건 처리시간 0.029초

드론영상과 YOLOv7x 모델을 이용한 활성산불 객체탐지 (Detection of Active Fire Objects from Drone Images Using YOLOv7x Model)

  • 박강현;강종구;최소연;윤유정;김근아;이양원
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1737-1741
    • /
    • 2022
  • 고해상도 드론영상과 딥러닝 기술을 결합한 활성산불 감시는 이제 초기단계로 다방면의 연구개발을 필요로 한다. 이 단보에서는 드론영상 산불탐지에 아직 사용되지 않았던 state-of-the-art (SOTA) 모델인 You Only Look Once Version 7 (YOLOv7) 기반의 활성산불 객체탐지를 수행하였으며, 동일한 데이터셋을 사용한 선행연구에 비해 F1점수가 약 0.05 향상된 성과를 거두었다. 향후 우리나라에서도 광역적인 산불감시에 적용될 수 있도록 추가적인 기술 개발이 계속 필요할 것이다.

YOLO 신경망 기반의 UAV 영상을 이용한 건물 객체 탐지 분석 (Analysis of Building Object Detection Based on the YOLO Neural Network Using UAV Images)

  • 김준석;홍일영
    • 한국측량학회지
    • /
    • 제39권6호
    • /
    • pp.381-392
    • /
    • 2021
  • 본 연구에서는 UAV (Unmanned Aerial Vehicle)로 촬영한 이미지를 활용하여 수치지도 지형지물 표준 코드에서 정의하고 있는 건물 8종에 대하여 딥러닝 기반의 객체 탐지 분석을 수행하였다. UAV로 촬영한 이미지 509매에 대하여 이미지 라벨링을 하였고 YOLO (You Only Look Once) v5 모델을 적용하여 학습 및 추론을 진행하였다. 실험 및 분석은 오픈소스 기반의 분석 플랫폼과 알고리즘을 적용하여 데이터를 분석하였으며 분석결과 88%~98%의 예측 확률로 건물 객체를 탐지하였다. 또한 학습데이터의 구축 및 반복 학습의 과정에서 건물 객체 탐지의 높은 정확도를 위해 필요한 학습 방식 및 모델 구축방식을 분석하였고, 학습한 모델을 다른 영상자료에 적용하는 방안을 모색하였다. 본 연구를 통해 고효율 심층 신경망과 공간정보데이터가 융합하는 모델을 제안하며 공간정보데이터와 딥러닝 기술의 융합은 향후 공간정보데이터 구축의 효율성, 분석 및 예측의 정확도 향상에 많은 도움을 제공할 것이다.

SHOMY: Detection of Small Hazardous Objects using the You Only Look Once Algorithm

  • Kim, Eunchan;Lee, Jinyoung;Jo, Hyunjik;Na, Kwangtek;Moon, Eunsook;Gweon, Gahgene;Yoo, Byungjoon;Kyung, Yeunwoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2688-2703
    • /
    • 2022
  • Research on the advanced detection of harmful objects in airport cargo for passenger safety against terrorism has increased recently. However, because associated studies are primarily focused on the detection of relatively large objects, research on the detection of small objects is lacking, and the detection performance for small objects has remained considerably low. Here, we verified the limitations of existing research on object detection and developed a new model called the Small Hazardous Object detection enhanced and reconstructed Model based on the You Only Look Once version 5 (YOLOv5) algorithm to overcome these limitations. We also examined the performance of the proposed model through different experiments based on YOLOv5, a recently launched object detection model. The detection performance of our model was found to be enhanced by 0.3 in terms of the mean average precision (mAP) index and 1.1 in terms of mAP (.5:.95) with respect to the YOLOv5 model. The proposed model is especially useful for the detection of small objects of different types in overlapping environments where objects of different sizes are densely packed. The contributions of the study are reconstructed layers for the Small Hazardous Object detection enhanced and reconstructed Model based on YOLOv5 and the non-requirement of data preprocessing for immediate industrial application without any performance degradation.

Deep Learning-Based Companion Animal Abnormal Behavior Detection Service Using Image and Sensor Data

  • Lee, JI-Hoon;Shin, Min-Chan;Park, Jun-Hee;Moon, Nam-Mee
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권10호
    • /
    • pp.1-9
    • /
    • 2022
  • 본 논문에서는 영상 데이터와 센서 데이터를 활용한 딥러닝 기반의 반려동물 이상행동 탐지 서비스를 제안한다. 최근 반려동물 보유 가구의 증가로 인해 기존 푸드 및 의료 중심의 반려동물 시장에서 인공지능을 더한 펫테크(Pet Tech) 산업이 성장하고 있다. 본 연구에서는 인공지능을 통한 반려동물의 건강관리를 위해 영상 및 센서 데이터를 활용한 딥러닝 모델을 기반으로 반려동물의 행동을 분류하고, 이상행동을 탐지하였다. 자택의 CCTV와 직접 제작한 펫 웨어러블 디바이스를 활용하여 반려동물의 영상 데이터 및 센서 데이터를 수집하고, 모델의 입력 데이터로 활용한다. 행동의 분류를 위해 본 연구에서는 반려동물의 객체를 검출하기 위한 YOLO(You Only Look Once) 모델과 관절 좌표를 추출하기 위한 DeepLabCut을 결합하여 영상 데이터를 처리하였고, 센서 데이터를 처리하기 위해 각 센서 별 연관관계 및 특징을 파악할 수 있는 GAT(Graph Attention Network)를 활용하였다.

Corroded and loosened bolt detection of steel bolted joints based on improved you only look once network and line segment detector

  • Youhao Ni;Jianxiao Mao;Hao Wang;Yuguang Fu;Zhuo Xi
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.23-35
    • /
    • 2023
  • Steel bolted joint is an important part of steel structure, and its damage directly affects the bearing capacity and durability of steel structure. Currently, the existing research mainly focuses on the identification of corroded bolts and corroded bolts respectively, and there are few studies on multiple states. A detection framework of corroded and loosened bolts is proposed in this study, and the innovations can be summarized as follows: (i) Vision Transformer (ViT) is introduced to replace the third and fourth C3 module of you-only-look-once version 5s (YOLOv5s) algorithm, which increases the attention weights of feature channels and the feature extraction capability. (ii) Three states of the steel bolts are considered, including corroded bolt, bolt missing and clean bolt. (iii) Line segment detector (LSD) is introduced for bolt rotation angle calculation, which realizes bolt looseness detection. The improved YOLOv5s model was validated on the dataset, and the mean average precision (mAP) was increased from 0.902 to 0.952. In terms of a lab-scale joint, the performance of the LSD algorithm and the Hough transform was compared from different perspective angles. The error value of bolt loosening angle of the LSD algorithm is controlled within 1.09%, less than 8.91% of the Hough transform. Furthermore, the proposed framework was applied to fullscale joints of a steel bridge in China. Synthetic images of loosened bolts were successfully identified and the multiple states were well detected. Therefore, the proposed framework can be alternative of monitoring steel bolted joints for management department.

스마트 교통 단속 시스템을 위한 딥러닝 기반 차종 분류 모델 (Vehicle Type Classification Model based on Deep Learning for Smart Traffic Control Systems)

  • 김도영;장성진;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.469-472
    • /
    • 2022
  • 최근 지능형 교통 시스템의 발전에 따라 딥러닝을 기술을 적용한 다양한 기술들이 활용되고 있다. 도로를 주행하는 불법 차량 및 범죄 차량 단속을 위해서는 차량 종류를 정확히 판별할 수 있는 차종 분류 시스템이 필요하다. 본 연구는 YOLO(You Only Look Once)를 이용하여 이동식 차량 단속 시스템에 최적화된 차종 분류 시스템을 제안한다. 제안 시스템은 차량을 승용차, 경·소·중형 승합차, 대형 승합차, 화물차, 이륜차, 특수차, 건설기계, 7가지 클래스로 구분하여 탐지하기 위해 단일 단계 방식의 객체 탐지 알고리즘 YOLOv5를 사용한다. 인공지능 기술개발을 위하여 한국과학기술연구원에서 구축한 약 5천 장의 국내 차량 이미지 데이터를 학습 데이터로 사용하였다. 한 대의 카메라로 정면과 측면 각도를 모두 인식할 수 있는 차종 분류 알고리즘을 적용한 지정차로제 단속 시스템을 제안하고자 한다.

  • PDF

ROS 기반 지능형 무인 배송 로봇 시스템의 구현 (Implementation of ROS-Based Intelligent Unmanned Delivery Robot System)

  • 공성진;이원창
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.610-616
    • /
    • 2023
  • 본 논문에서는 Robot Operating System(ROS) 기반의 모바일 매니퓰레이터(Manipulator)를 이용한 무인 배송 로봇 시스템을 구현하고 시스템 구현을 위해 사용된 기술에 대해 소개한다. 로봇은 엘리베이터를 이용해 건물 내부에서 자율주행이 가능한 모바일 로봇과 진공 펌프를 부착한 Selective Compliance Assembly Robot Arm(SCARA)-Type의 매니퓰레이터로 구성된다. 로봇은 매니퓰레이터에 부착된 카메라를 이용하여 이미지 분할과 모서리 검출을 통해 배송물을 들어올리기 위한 위치와 자세를 결정할 수 있다. 제안된 시스템은 스마트폰 앱 및 ROS와 연동된 웹서버를 통해 배송 현황을 조회하고 로봇의 실시간 위치를 파악할 수 있도록 사용자 인터페이스를 가지고 있으며, You Only Look Once(YOLO)와 Optical Character Recognition(OCR)을 통해 배송 스테이션에서 배송물과 주소지를 인식한다. 아울러 4층 건물 내부에서 진행한 배송 실험을 통해 시스템의 유효성을 검증하였다.

적대적 회피 공격에 대응하는 안전한 자율주행 자동차 시스템 (Secure Self-Driving Car System Resistant to the Adversarial Evasion Attacks)

  • 이승열;이현로;하재철
    • 정보보호학회논문지
    • /
    • 제33권6호
    • /
    • pp.907-917
    • /
    • 2023
  • 최근 자율주행 자동차는 운전자 지원 시스템에 딥러닝 기술을 적용하여 운전자에게 편의성을 제공하고 있지만, 딥러닝 기술이 적대적 회피 공격(adversarial evasion attacks)에 취약함이 밝혀졌다. 본 논문에서는 객체 인식 알고리즘인 YOLOv5(You Only Look Once)를 대상으로 MI-FGSM (Momentum Iterative-Fast Gradient Sign Method)를 포함한 5가지 적대적 회피 공격을 수행하였으며 객체 탐지 성능을 mAP(mean Average Precision)로 측정하였다. 특히, 본 논문에서는 모폴로지 연산을 적용하여 적대적 공격으로부터 노이즈를 제거하고 경계선을 추출하여 YOLO가 객체를 정상적 탐지할 수 있는 방안을 제안하고 이를 실험을 통해 그 성능을 분석하였다. 실험 결과, 적대적 공격을 수행했을 때 YOLO의 mAP가 최소 7.9%까지 떨어져 YOLO가 객체를 정확하게 탐지하지 못하는 것을 87.3%까지 성능을 개선하였다.

우회전 차량 사고 예방을 위한 객체 탐지 및 경고 모델 연구 (A Study on Object Detection and Warning Model for the Prevention of Right Turn Car Accidents)

  • 조상준;신성욱;노명재
    • 디지털정책학회지
    • /
    • 제2권4호
    • /
    • pp.33-39
    • /
    • 2023
  • 교차로에서의 우회전 교통사고가 지속적으로 발생하면서 우회전 교통사고에 대한 대책 마련이 촉구되고 있다. 이에 우회전 지역의 CCTV 영상에서의 객체 탐지를 통해 보행자의 유무를 탐지하고 이를 디스플레이에 경고 문구를 출력해 운전자에게 알리는 기술을 개발하였다. 객체 탐지 모델 중 하나인 YOLO(You Only Look Once) 모델을 이용하여 객체 탐지의 성능평가를 확인하고, 추가적인 후처리 알고리즘을 통해 오인식 문제 해결 및 보행자 확인 시 경고 문구를 출력하는 알고리즘을 개발 하였다. 보행자 혹은 객체를 인식하여 경고 문구를 출력하는 정확도는 82% 수준으로 측정되었으며 이를 통해 우회전 사고 예방에 기여할 수 있을 것으로 예상된다.

YOLO 알고리즘을 활용한 Planetscope 위성영상 기반 비닐하우스 탐지 (Detecting Greenhouses from the Planetscope Satellite Imagery Using the YOLO Algorithm)

  • 김성수;정연인;정윤재
    • 한국지리정보학회지
    • /
    • 제26권4호
    • /
    • pp.27-39
    • /
    • 2023
  • 원격탐사 자료 기반 비닐하우스 탐지 기술 개발은 불법 농경 시설물의 현황 파악과 비닐하우스에서 재배되는 농작물 수량 예측을 위해 중요하다. 본 연구에서는 딥러닝 알고리즘을 활용하여 김제시 지역을 촬영한 Planetscope 위성영상들로부터 비닐하우스를 탐지하기 위한 방법을 제안하였다. 우선, 5장의 Planetscope 위성영상을 기반으로 비닐하우스 객체를 포함한 훈련 영상들을 제작하였다. 그리고, 훈련 영상들을 이용하여 YOLO(You Only Look Once) 모델을 학습시킨다. 학습시킨 YOLO 모델을 테스트 Planetscope 위성영상에 적용하여 비닐하우스 객체들을 탐지한다. 본 연구에서 제안한 방법을 적용한 결과, 주어진 Planetscope 위성영상으로부터 총 76.4%의 비닐하우스가 탐지되었다. 추후 연구에서는 공간해상도 1m 이하의 고해상도 위성영상에서 더 많은 비닐하우스 객체를 탐지하기 위한 기술을 개발할 계획이다.