고해상도 드론영상과 딥러닝 기술을 결합한 활성산불 감시는 이제 초기단계로 다방면의 연구개발을 필요로 한다. 이 단보에서는 드론영상 산불탐지에 아직 사용되지 않았던 state-of-the-art (SOTA) 모델인 You Only Look Once Version 7 (YOLOv7) 기반의 활성산불 객체탐지를 수행하였으며, 동일한 데이터셋을 사용한 선행연구에 비해 F1점수가 약 0.05 향상된 성과를 거두었다. 향후 우리나라에서도 광역적인 산불감시에 적용될 수 있도록 추가적인 기술 개발이 계속 필요할 것이다.
본 연구에서는 UAV (Unmanned Aerial Vehicle)로 촬영한 이미지를 활용하여 수치지도 지형지물 표준 코드에서 정의하고 있는 건물 8종에 대하여 딥러닝 기반의 객체 탐지 분석을 수행하였다. UAV로 촬영한 이미지 509매에 대하여 이미지 라벨링을 하였고 YOLO (You Only Look Once) v5 모델을 적용하여 학습 및 추론을 진행하였다. 실험 및 분석은 오픈소스 기반의 분석 플랫폼과 알고리즘을 적용하여 데이터를 분석하였으며 분석결과 88%~98%의 예측 확률로 건물 객체를 탐지하였다. 또한 학습데이터의 구축 및 반복 학습의 과정에서 건물 객체 탐지의 높은 정확도를 위해 필요한 학습 방식 및 모델 구축방식을 분석하였고, 학습한 모델을 다른 영상자료에 적용하는 방안을 모색하였다. 본 연구를 통해 고효율 심층 신경망과 공간정보데이터가 융합하는 모델을 제안하며 공간정보데이터와 딥러닝 기술의 융합은 향후 공간정보데이터 구축의 효율성, 분석 및 예측의 정확도 향상에 많은 도움을 제공할 것이다.
Kim, Eunchan;Lee, Jinyoung;Jo, Hyunjik;Na, Kwangtek;Moon, Eunsook;Gweon, Gahgene;Yoo, Byungjoon;Kyung, Yeunwoong
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권8호
/
pp.2688-2703
/
2022
Research on the advanced detection of harmful objects in airport cargo for passenger safety against terrorism has increased recently. However, because associated studies are primarily focused on the detection of relatively large objects, research on the detection of small objects is lacking, and the detection performance for small objects has remained considerably low. Here, we verified the limitations of existing research on object detection and developed a new model called the Small Hazardous Object detection enhanced and reconstructed Model based on the You Only Look Once version 5 (YOLOv5) algorithm to overcome these limitations. We also examined the performance of the proposed model through different experiments based on YOLOv5, a recently launched object detection model. The detection performance of our model was found to be enhanced by 0.3 in terms of the mean average precision (mAP) index and 1.1 in terms of mAP (.5:.95) with respect to the YOLOv5 model. The proposed model is especially useful for the detection of small objects of different types in overlapping environments where objects of different sizes are densely packed. The contributions of the study are reconstructed layers for the Small Hazardous Object detection enhanced and reconstructed Model based on YOLOv5 and the non-requirement of data preprocessing for immediate industrial application without any performance degradation.
본 논문에서는 영상 데이터와 센서 데이터를 활용한 딥러닝 기반의 반려동물 이상행동 탐지 서비스를 제안한다. 최근 반려동물 보유 가구의 증가로 인해 기존 푸드 및 의료 중심의 반려동물 시장에서 인공지능을 더한 펫테크(Pet Tech) 산업이 성장하고 있다. 본 연구에서는 인공지능을 통한 반려동물의 건강관리를 위해 영상 및 센서 데이터를 활용한 딥러닝 모델을 기반으로 반려동물의 행동을 분류하고, 이상행동을 탐지하였다. 자택의 CCTV와 직접 제작한 펫 웨어러블 디바이스를 활용하여 반려동물의 영상 데이터 및 센서 데이터를 수집하고, 모델의 입력 데이터로 활용한다. 행동의 분류를 위해 본 연구에서는 반려동물의 객체를 검출하기 위한 YOLO(You Only Look Once) 모델과 관절 좌표를 추출하기 위한 DeepLabCut을 결합하여 영상 데이터를 처리하였고, 센서 데이터를 처리하기 위해 각 센서 별 연관관계 및 특징을 파악할 수 있는 GAT(Graph Attention Network)를 활용하였다.
Youhao Ni;Jianxiao Mao;Hao Wang;Yuguang Fu;Zhuo Xi
Smart Structures and Systems
/
제32권1호
/
pp.23-35
/
2023
Steel bolted joint is an important part of steel structure, and its damage directly affects the bearing capacity and durability of steel structure. Currently, the existing research mainly focuses on the identification of corroded bolts and corroded bolts respectively, and there are few studies on multiple states. A detection framework of corroded and loosened bolts is proposed in this study, and the innovations can be summarized as follows: (i) Vision Transformer (ViT) is introduced to replace the third and fourth C3 module of you-only-look-once version 5s (YOLOv5s) algorithm, which increases the attention weights of feature channels and the feature extraction capability. (ii) Three states of the steel bolts are considered, including corroded bolt, bolt missing and clean bolt. (iii) Line segment detector (LSD) is introduced for bolt rotation angle calculation, which realizes bolt looseness detection. The improved YOLOv5s model was validated on the dataset, and the mean average precision (mAP) was increased from 0.902 to 0.952. In terms of a lab-scale joint, the performance of the LSD algorithm and the Hough transform was compared from different perspective angles. The error value of bolt loosening angle of the LSD algorithm is controlled within 1.09%, less than 8.91% of the Hough transform. Furthermore, the proposed framework was applied to fullscale joints of a steel bridge in China. Synthetic images of loosened bolts were successfully identified and the multiple states were well detected. Therefore, the proposed framework can be alternative of monitoring steel bolted joints for management department.
최근 지능형 교통 시스템의 발전에 따라 딥러닝을 기술을 적용한 다양한 기술들이 활용되고 있다. 도로를 주행하는 불법 차량 및 범죄 차량 단속을 위해서는 차량 종류를 정확히 판별할 수 있는 차종 분류 시스템이 필요하다. 본 연구는 YOLO(You Only Look Once)를 이용하여 이동식 차량 단속 시스템에 최적화된 차종 분류 시스템을 제안한다. 제안 시스템은 차량을 승용차, 경·소·중형 승합차, 대형 승합차, 화물차, 이륜차, 특수차, 건설기계, 7가지 클래스로 구분하여 탐지하기 위해 단일 단계 방식의 객체 탐지 알고리즘 YOLOv5를 사용한다. 인공지능 기술개발을 위하여 한국과학기술연구원에서 구축한 약 5천 장의 국내 차량 이미지 데이터를 학습 데이터로 사용하였다. 한 대의 카메라로 정면과 측면 각도를 모두 인식할 수 있는 차종 분류 알고리즘을 적용한 지정차로제 단속 시스템을 제안하고자 한다.
본 논문에서는 Robot Operating System(ROS) 기반의 모바일 매니퓰레이터(Manipulator)를 이용한 무인 배송 로봇 시스템을 구현하고 시스템 구현을 위해 사용된 기술에 대해 소개한다. 로봇은 엘리베이터를 이용해 건물 내부에서 자율주행이 가능한 모바일 로봇과 진공 펌프를 부착한 Selective Compliance Assembly Robot Arm(SCARA)-Type의 매니퓰레이터로 구성된다. 로봇은 매니퓰레이터에 부착된 카메라를 이용하여 이미지 분할과 모서리 검출을 통해 배송물을 들어올리기 위한 위치와 자세를 결정할 수 있다. 제안된 시스템은 스마트폰 앱 및 ROS와 연동된 웹서버를 통해 배송 현황을 조회하고 로봇의 실시간 위치를 파악할 수 있도록 사용자 인터페이스를 가지고 있으며, You Only Look Once(YOLO)와 Optical Character Recognition(OCR)을 통해 배송 스테이션에서 배송물과 주소지를 인식한다. 아울러 4층 건물 내부에서 진행한 배송 실험을 통해 시스템의 유효성을 검증하였다.
최근 자율주행 자동차는 운전자 지원 시스템에 딥러닝 기술을 적용하여 운전자에게 편의성을 제공하고 있지만, 딥러닝 기술이 적대적 회피 공격(adversarial evasion attacks)에 취약함이 밝혀졌다. 본 논문에서는 객체 인식 알고리즘인 YOLOv5(You Only Look Once)를 대상으로 MI-FGSM (Momentum Iterative-Fast Gradient Sign Method)를 포함한 5가지 적대적 회피 공격을 수행하였으며 객체 탐지 성능을 mAP(mean Average Precision)로 측정하였다. 특히, 본 논문에서는 모폴로지 연산을 적용하여 적대적 공격으로부터 노이즈를 제거하고 경계선을 추출하여 YOLO가 객체를 정상적 탐지할 수 있는 방안을 제안하고 이를 실험을 통해 그 성능을 분석하였다. 실험 결과, 적대적 공격을 수행했을 때 YOLO의 mAP가 최소 7.9%까지 떨어져 YOLO가 객체를 정확하게 탐지하지 못하는 것을 87.3%까지 성능을 개선하였다.
교차로에서의 우회전 교통사고가 지속적으로 발생하면서 우회전 교통사고에 대한 대책 마련이 촉구되고 있다. 이에 우회전 지역의 CCTV 영상에서의 객체 탐지를 통해 보행자의 유무를 탐지하고 이를 디스플레이에 경고 문구를 출력해 운전자에게 알리는 기술을 개발하였다. 객체 탐지 모델 중 하나인 YOLO(You Only Look Once) 모델을 이용하여 객체 탐지의 성능평가를 확인하고, 추가적인 후처리 알고리즘을 통해 오인식 문제 해결 및 보행자 확인 시 경고 문구를 출력하는 알고리즘을 개발 하였다. 보행자 혹은 객체를 인식하여 경고 문구를 출력하는 정확도는 82% 수준으로 측정되었으며 이를 통해 우회전 사고 예방에 기여할 수 있을 것으로 예상된다.
원격탐사 자료 기반 비닐하우스 탐지 기술 개발은 불법 농경 시설물의 현황 파악과 비닐하우스에서 재배되는 농작물 수량 예측을 위해 중요하다. 본 연구에서는 딥러닝 알고리즘을 활용하여 김제시 지역을 촬영한 Planetscope 위성영상들로부터 비닐하우스를 탐지하기 위한 방법을 제안하였다. 우선, 5장의 Planetscope 위성영상을 기반으로 비닐하우스 객체를 포함한 훈련 영상들을 제작하였다. 그리고, 훈련 영상들을 이용하여 YOLO(You Only Look Once) 모델을 학습시킨다. 학습시킨 YOLO 모델을 테스트 Planetscope 위성영상에 적용하여 비닐하우스 객체들을 탐지한다. 본 연구에서 제안한 방법을 적용한 결과, 주어진 Planetscope 위성영상으로부터 총 76.4%의 비닐하우스가 탐지되었다. 추후 연구에서는 공간해상도 1m 이하의 고해상도 위성영상에서 더 많은 비닐하우스 객체를 탐지하기 위한 기술을 개발할 계획이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.