• Title/Summary/Keyword: Yongdongri Tuff

Search Result 4, Processing Time 0.018 seconds

Source Area of the Rocks Using the West Stone Pagoda of Gameunsaji Temple Site, Korea (감은사지삼층석탑(서탑)에 사용된 석재 공급지에 대한 연구)

  • Jwa, Yong-Joo;Kim, Kun-Ki;Ko, Seok-Bae;Kim, Jong-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.3 s.45
    • /
    • pp.128-138
    • /
    • 2006
  • The west stone pagoda of Gameunssji temple site (National Treasure No. 112) has been damaged mainly by fracture, exfoliation and granular disintegration. In this study, the source area of the rocks using the west stone pagoda was examined in terms of petrological feature, magnetic susceptibility, and ${\gamma}-ray$ spectrometer. The stones include abundant crystal fragments of biotite, quartz and feldspars in the fine-grained matrix; they are petrographically discriminated to vitric-crystal tuff or crystal tuff. Measured magnetic susceptibility values are of from 10 to 20 $({\times}10^{-3}\;SI\;unit)$. From the ${\gamma}-ray$ spectrometer measurement K, eU, and eTh contents of the stones are about 3%, 0 to 8ppm, and 9 to 18 ppm, respectively. These features are used as indicators to presume the source area of the stones. Comparing the petrographical and chemical characteristics between the stones of the west stone pagoda and the country rocks near the Gameunsaji temple site, it is suggested that the most similar country rock to the stones could be dacitic volcanic rocks of the Beomgokri group in the Waeup basin. The Beomgokri group is lithostratigraphically divided into Waeupri tuff, Yongdongri tuff and Beomgokri volcanic rocks. Among the three rocks, the crystal tuff of the Beomgokri volcanic rocks seems likely to have been the source rock of the stones of the west stone pagoda.

Tectonics of the Tertiary Eoil and Waeup basins in the southeastern part of Korea (한반도 동남부 제3기 어일분지 및 와읍분지의 지구조 운동)

  • Chang, Tae-Woo;Jeong, Jae-Hyok;Chang, Chun-Joong
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.27-40
    • /
    • 2007
  • Stratigraphy has been renewedly set up and the evolution of tectonic events related to basin formation has been exam-ined on the basis of fault-slip data analysis in the Tertiary Eoil and Waeup basins of the southeastern part of Korea. First of all, field mapping was carried out in detail for Tertiary formations and then paleostress analysis were peformed with more than 400 fault slip data collected from 11 sites in the Tertiary formations and the Yucheon Group. It is judged that both the Eoil and Waeup basins filled up with Tertiary deposits might be simultaneously formed in separate locations. The Janggi Group in the Eoil basin is divided into following stratigraphic units in ascending order: Gampo Conglomerte, Hongdeok Basalt, Nodongri Conglomerate and Yeondang Basalt, and the Bomkori Group in the Waeup basin: Waeupri Tuff; Andongri Conglomerate, Yongdongri Tuff and Hoamri Volcanic Breccia. Paleostress analysis by using striated faults reveals five sequential tectonic events: (1) NW-SE transtension (event I), (2) NW-SE transpression (event IIl), (3) NE-SW pure extension (event III), (4) N-S transpression (event IV) and (5) E-W pure compression (event V). Therefore, five sequential tectonic movements are closely associated with the formation and evolution of the Tertiary basins in the study area: tectonic event I of NW-SE extension is related to formation of the Tertiary basins during the late Oligocene to the Early Miocene, tectonic events II, III and IV caused the termination of the Tertiary basin opening and the crustal uplift in the study area, and tectonic event V upheaved the east coast or Korean Peninsula with compressive stress due to intense subduction of the Pacific plate into Asian continent since the Early Pliocene.

Developmental Characteristics and Weathering Processes of Tafoni at Golgulsa Temple, Gyeongju, South Korea (경주 골굴사 타포니의 발달 특성과 풍화 과정)

  • Shin, Jae Ryul;Choo, Chang Oh;Lee, Jin Kook;Park, Kyung Geun
    • Journal of the Korean association of regional geographers
    • /
    • v.23 no.1
    • /
    • pp.168-177
    • /
    • 2017
  • In order to reveal formation factors and developmental processes of tafoni this study was conducted with petrological analysis including microscopic observation, measurement of water content and water analysis at Golgulsa temple in Gyeongju, South Korea. The direction of the entrance to tafoni at Golgulsa temple tends to coincide with the direction of slope, and this is thought to be related to the direction of wind flow and water supply. Tafoni's initial developmental processes is judged to have grown as a result of a breakaway of rock fragments along with beddings and cracks in rock. Then, tafoni have been enlarged along at the spots that sufficiently accommodate water supply depending on the direction of wind. The results of water analysis of the stagnant water in gnamma implies that a high meltage of Na and Cl compared to other inland areas can be from the adjacent shore. The effects of such saline substances on rock weathering and development of taponi are currently under way through electronic microscopy and geochemical analysis.

  • PDF

[ $^{40}Ar/^{39}Ar$ ] Ages of the Tertiary Dike Swarm and Volcanic Rocks, SE Korea (한반도 남동부 제3기 암맥군과 화신암류의 $^{40}Ar/^{39}Ar$ 연대)

  • Kim Jong-Sun;Son Moon;Kim Jin-Seop;Kim Jeongmin
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.93-107
    • /
    • 2005
  • We determined $^{40}Ar/^{39}Ar$ ages of the Tertiary dike swarms and volcanic rocks distributed in the SE Korea where the most prevalent crustal-deformation and volcanism occurred during the period. In previous study, it was disclosed that the mafic dike swarms on both sides (east and west) of the Yeonil Tectonic Line (YTL) were originated from a same magma although they are consistently aligned with different intrusion directions of NS and NE, respectively. Ages of the mafic dike swarms of this study are $47.3\pm0.8Ma$ and $48.0\pm1.3Ma$, respectively and confirm such conclusion. These facts clarify that the YTL acted as a westernmost limit of the crustal deformation, especially clockwise crust-rotation, during the Miocene. Frequent occurrence of basic dikes indicate strongly that the southeastern part of the Korean Peninsula was under E-W extensional stress field at about 48 Ma, intimately related to the India-Asia collision and subsequent sudden change of the Pacific Plate motion. The ages of the uncommonly appearing intermediate and felsic dikes were determined as $55.9\pm1.5Ma$ and $53.0\pm1.0Ma$, respectively. Ages of the andesitic lava of the Hyodongri Volcanics, the dacitic lava of the Yongdongri Tuff, and dacitic rocks intruding and covering the Churyeong Breccia were determined as $24.0\pm0.5Ma,\;21.6\pm0.4Ma$, $21.8\pm0.1Ma,\;and\;22.0\pm0.5Ma$ respectively. The ages from the volcanics agrees well with the stratigraphy established by the latest field survey, which confirms that the $andesitic\~dacitic$ volcanism was followed by the basaltic volcanism during the Early Miocene.