• Title/Summary/Keyword: Yongdam-dam

Search Result 146, Processing Time 0.032 seconds

A Study on Daily Water Storage Simulation of the Daecheong Dam by Operation Scenario of the Yongdam Dam (용담댐 운영 시나리오에 따른 대청댐 저수량 변화에 관한 연구)

  • Noh Jaekyoung;Kim Hyun-hoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1403-1407
    • /
    • 2005
  • In order to analyze the water storage of the Daecheong dam after constructing the Yongdam dam situated in upstream, a daily cascaded simulation model for analyzing water storages in the Yongdam-Daecheong dams was developed. Operation scenarios of the Yongdam dam were selected to 8 cases with the combinations of downstream outflows and water supplies to the Jeonju region. Daily water storages in the Daecheong dam was analyzed daily by simulating from 1983 to 2004. The results are summarized as follows. Firstly, water supplies from the Daecheong dam were analyzed to amount $1,964.2Mm^3$ on a yearly average in case without the Yongdam dam. In case with the Yongdam dam, water supplies from the Daecheong dam were analyzed to amount $1,858.7\~1,927.3Mm^3$ in case with downstream outflow of $5\;m^3$ is, and were analyzed to amount $1,994.9\~2,017.8Mm^3$ in case with downstream outflow of $10\;m^3/s $. These values are compared to $1,649Mm^3$ applied in design. Secondly, reservoir use rate which was defined rate of water supply to effective water storage reached $241.3\% in case without the Yongdam dam. In case with the Yongdam dam, reservoir use rate reached $228.3\~236.8\% In case with downstream outflow of $5\;m^3/s$, and reached $245.1\~247.9\% in case with downstream outflow of $10\;m^3/s$. Thirdly, runoff rate which is defined rate of dam inflow to areal rainfall reached $57.3\% in case without the Yongdam dam. In case with the Yongdam dam, reservoir use rate reached $62.0\~68.4\% in case with downstream outflow of $5\;m^3/s$, and reached $64.1\~68.5\% in case with downstream outflow of $10\;m^3/s$. Fourth, in case with downstream outflow of $10\;m^3/s$ is from the Yongdam dam, appropriate water supply amounts to the Jeonju region were analyzed to only $0.50Mm^3/day$ from the daily simulation of water storages in the Yongdam dam. Comprehensively, water supply capacity of the Daecheong dam was analyzed to affect in small amounts in spite of the construction of the Yonsdam dam. It is effected to achieve the effective water management of the Yongdam dam and the Daecheong dam by using the developed cascaded model.

  • PDF

Effect of Yongdam Dam Operation to Level of Reference Flows Downstream (용담댐 운영이 하류 기준유량 설정에 미치는 영향)

  • Noh, Jae-Kyoung;Yoo, Jae-Min;Oh, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1772-1776
    • /
    • 2006
  • The Ministry of Environment is determining reference flows and goal water qualities in many stations over all around riverbasin to control TMDL. Reference flow is now defined to 10 years averaged 275th minimum flow$(Q_{275})$. Dam operation takes direct effect on flows downstream. The Yongdam mutipurposed dam was constructed in 2002 and TMDL managing stations between the Daecheong dam and the Yongdam dam are the Geumbon B, C, D, E, and F in main stream of the Geum river. Geumbon F is the Daecheong dam site. Observed flows are ideal to be used to set reference flows, but simulated flows are more practical to be used to set reference flows from the cause of the Yongdam dam's operation. A system for simulating daily storages of the Yongdam dam was constructed and the DAWAST model was selected to simulate daily streamflows. Analysis period was selected for 10 years from 1996 to 2005. Scenario was set as follows; Firstly, observed outflows from the Yongdam dam are used from 2002 to 2005 and the Yongdam dam does not exist from 1995 to 2001. Secondly, the Yongdam dam existed also from 1995 to 2001 and simulated outflows from the Yongdam dam are used from 1996 to 2005 with provision of constant outflow of $7.0m^3/s$ and water supply to the Jeonju region outsided watershed of $900,000m^3/day$. In case of scenario 1 reference flows at the Geumbon B, C, D, E, F are 4.52, 6.69, 7.96, 11.17, and $13.21m^3/s$, respectively. And in case of scenario 2 reference flows at the Geumbon B, C, D, E, F are 6.27, 8.48, 9.58, 12.73, and $15.12m^3/s$, respectively.

  • PDF

Study on Assessment of Value of Yongdam Dam-wetland using Contingent Valuation Method (조건부가치측정법을 이용한 용담댐습지의 가치평가 연구)

  • ;Yoo, Byong-Kook;Kim, Jae-Geun;Shin, Han-Kyu;Kim, Hung-Soo;Ahn, Kyung-Soo;Jang, Suk-Won
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.147-158
    • /
    • 2012
  • Recently, there have been a lot of studies for the value for wetlands with increased interest about wetlands. However, the value assessment for wetlands was usually conducted for natural wetlands only, without consideration for Dam-wetlands. In this study, we assumed that a dam carried out a function of wetlands and defined such dams as Dam-wetlands. Contingent Valuation Method(CVM) was used in value assessment method. Study area of this study is Yongdam-dam. We performed questionnaire survey in six metropolitan cities for the value assessment of Dam-wetland. As a result, the total values of a Yongdam-dam is estimated as 4.2 billion-won for construction scenario of wetland ecological park.

Water Quality Modelling of Daechung Lake - Effect of Yongdam Dam (용담댐의 영향분석을 위한 대청호 수질모델링)

  • Seo, Dong-Il;Lee, Eun-Hyoung
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.737-751
    • /
    • 2002
  • Water quality in Daechung Lake was predicted for various discharge conditions of Yongdam dam. The same scenarios were applied as in the previous paper by the authors for Keum River water quality modeling. Effects in water quality due to changes in discharge conditions from Yongdam Dam were less distinct to the Daechung Lake than to the inflowing Keum River due to sink processes in the lake. For the minimum flow year, it is appropriate to maintain Yongdam dam discharge rate to 8.9 $m^3$/sec considering the current field conditions and future predictions of TN and TP concentrations of Yongdam dam. Effect of Yongdam dam discharge conditions to the Daechung Lake water quality were stronger for drier years. However it should be noted that the effects were dependent upon the water quality of Yongdam discharge at the same time. Therefore, water quality management effort should be emphasized before the discussion over the discharge volume of Yongdam dam. The input data sets for simulations in this study were formulated using the available data and assumptions based on authors experiences for the fields. Therefore, continued data collection effort will ensure the validity of this study.

Water Quality Modelling of the Keum River - Effect of Yongdam Dam (용담댐의 영향분석을 위한 금강의 수질모델링)

  • Lee, Eun-Hyung;Seo, Dong-Il
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.525-539
    • /
    • 2002
  • Effects of Yongdam Dam discharge conditions on water quality of the Keum River and Daechung Lake inflow were analyzed for various scenarios using WASP5 water quality model. Three different groups of scenarios were tested: 1) Two different weather conditions; the lowest flow year and the highest flow year since the beginning of Daechung Dam operation in 1981, 2) Fine discharge flow rates; 5.4, 8.9, 12.4, 16.4 ㎥/s and field observed flow during the study period, 3) Three conditions of discharge water quality; first grade, second grade by Korean water quality standard and field observed water quality. Effect of changes in Yongdam Dam discharges was greater for dry year. The increase of discharge from the Yongdam Dam will improve water quality of downstream areas only when the water quality of the discharge is equal or better than that of downstream areas. Field observed water qualify data show that BOD concentrations are lower than first grade level but TN and TP concentrations are exceeding 5th and 3rd grade level in Korean standard, respectively. Considering that nutrient control methods in watershed areas of Yongdam dam are limited, it is expected that nutrient concentrations from Yongdam Dam discharge will be higher than 2nd grade water quality standard level. Therefore, it would be important to develop practical management strategies in the watershed area of Yongdam Dam based on field conditions for conservation of water quality in downstream areas.

Long-term Sediment Discharge Analysis in Yongdam Dam Watershed due to Climate Change

  • Felix, Micah Lourdes;Kim, Joocheol;Choi, Mikyoung;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.327-327
    • /
    • 2020
  • Increase in Earth's surface temperature, higher rainfall intensity rate, and rapid changes in land cover are just some of the most evident effects of climate change. Flooding, and river sedimentation are two inevitable natural processes in our environment, and both issues poses great risks in the dam industry when not addressed properly. River sedimentation is a significant issue that causes reservoir deposition, and thus causes the dam to gradually lose its ability to store water. In this study, the long-term effects of climate change on the sediment discharge in Yongdam Dam watershed is analyzed through the utilization of SWAT, a semi-distributed watershed model. Based from the results of this study, an abrupt increase on the annual sediment inflow trend in Yongdam Dam watershed was observed; which may suggests that due to the effects of climate change, higher rainfall intensity, land use and land cover changes, the sedimentation rate also increased. An efficient sedimentation management should consider the increasing trend in sedimentation rate due to the effects of climate change.

  • PDF

Impacts of Yongdam dam managment Plan on Daechung dam Storage (용담댐 관리계획이 대청댐 저수량에 미치는 영향)

  • 박정남;이재면;김태얼
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.550-555
    • /
    • 1999
  • yongdam multipurpose is under construction to divert a part fo Geum riverlfow to Mankyung watershed and to supply the domestic water to the Chunju region and produce the hydro-electricity. Generally construction of dam by the method of inther-region water transfer affects the quantity and quality of water inthe down streams and reservoirs. The impact of operation plan of Yondgam dam on the quantity and quality of water in the Guem river and Daechung dam was investigated .It was recommended that the discharge of water transfer from one watershed to another should be minimized as much as possible.

  • PDF

Functional Assessment of Yongdam Dam-wetland by HGM (HGM을 이용한 용담댐습지의 기능평가 연구)

  • Kim, Duck-Gil;Shin, Han-Kyu;Kim, Jae-Geun;Kim, Hung-Soo;Yoo, Byong-Kook;Ahn, Kyung-Soo;Jang, Seok-Won
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.665-675
    • /
    • 2011
  • Dam as a Wetland can provide functions of ecological conservation, water quality improvement, landscape, and so on as well as. Dam's own various functions. Here we tried to assess function and value of Yongdam dam as a wetland by Hydrogeomorphic(HGM) Method which was developed by U.S. Army Corps of Engineers. In this study, the Upo wetland and Boryeong dam were selected as reference wetlands to assess the functional index of the Yongdam dam. As the results, we obtained the functional index values over 0.6 for total index of the Yongdam dam. It describes that Yong dam dam-wetland is providing over 60% functions of the Upo wetland and Boryung dam-wetland. This result suggests that dam-wetland can provide good wetland functions efficiently if we conserve and manage well.

Laterally-Averaged Two-Dimensional Hydrodynamic and Turbidity Modeling for the Downstream of Yongdam Dam (용담댐 하류하천의 횡방향 평균 2차원 수리·탁수모델링)

  • Kim, Yu Kyung;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.710-718
    • /
    • 2011
  • An integrated water quality management of reservoir and river would be required when the quality of downstream river water is affected by the discharge of upstream dam. In particular, for the control of downstream turbidity during flood events, the integrated modeling of reservoir and river is effective approach. This work was aimed to develop a laterally-averaged two-dimensional hydrodynamic and water quality model (CE-QUAL-W2), by which water quality can be predicted in the downstream of Yongdam dam in conjunction with the reservoir model, and to validate the model under two different hydrological conditions; wet year (2005) and drought year (2010). The model results clearly showed that the simulated data regarding water elevation and suspended solid (SS) concentration are well corresponded with the measured data. In addition, the variation of SS concentration as a function of time was effectively simulated along the river stations with the developed model. Consequently, the developed model can be effectively applied for the integrated water quality management of Yongdam dam and downstream river.

An Ecological Comparison of Benthic Macroinvertebrate Community in Downstream Region of Large Dams (대형댐 하류지역 저서성 대형무척추동물 군집의 생태학적 비교)

  • Kim, Jae-Sung;Lee, Hwang-Goo;Choi, Jun-Kil
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.1
    • /
    • pp.52-63
    • /
    • 2013
  • Benthic macroinvertebrates were investigated in Yongdam-dam and Hapcheon-dam resions from June to October 2011, Korea. Yongdam-dam and Hapcheon-dam are geographically contiguous, but they are classified as other water system. Experiment site(YE-1, 2, 3; HE-1, 2, 3) which is thought to be affected by dam, control site(YC-1, 2; HC-1, 2) which is thought not to be affected by dam were selected. Species composition, macroinvertebrate communities, composition of the functional feeding groups, habitat orientied groups and community stability were assessed Yongdam-dam and Hapcheon-dam regions. Ten sites were selected for quantitative(Surber sampler $30cm{\times}30cm$) of benthic macroinvertebrates. As a results, a total of 6,369 individuals including 69 species, 33 families, 12 orders, 6 classes and 4 phyla were recognized in Yongdam-dam region. Also, a total of 5,728 individuals including 81 species, 44 families, 13 orders, 5 classes and 4 phyla were recognized in Hapcheon-dam region. Dominance index was 0.27~0.50(mean${\pm}$SD $0.38{\pm}0.09$), diversity index was 2.22~2.97($2.67{\pm}0.29$), evenness index was 0.63~0.76($0.72{\pm}0.06$) and richness index was 4.43~7.06($5.69{\pm}0.99$) in Yongdam-dam region. Dominance index was 0.40~0.81($0.59{\pm}0.18$), diversity index was 1.40~2.39($2.00{\pm}0.43$), evenness index was 0.38~0.68($0.56{\pm}0.13$) and richness index was 4.04~5.80($4.95{\pm}0.70$) in Hapcheon-dam region. In the functional feeding groups, filtering-collectors and gathering-collectors were the highest in the whole sites. In the habitat orientied groups, burrowers, clingers and swimmers were considerably occupied in all sites. As a result of community stability analysis, experiment sites has been identified much as species high resistance and resilience to environmental changes in Yongdam-dam. Control sites has been identified much as species low resistance and resilience to environmental changes in Hapcheon-dam. Species belonging to the Igroup is considered to be important in the river ecosystem stability of large dams downstream areas.