DOI QR코드

DOI QR Code

Laterally-Averaged Two-Dimensional Hydrodynamic and Turbidity Modeling for the Downstream of Yongdam Dam

용담댐 하류하천의 횡방향 평균 2차원 수리·탁수모델링

  • Kim, Yu Kyung (Department of Environmental Engineering, Chungbuk National University) ;
  • Chung, Se Woong (Department of Environmental Engineering, Chungbuk National University)
  • 김유경 (충북대학교 환경공학과) ;
  • 정세웅 (충북대학교 환경공학과)
  • Received : 2011.07.01
  • Accepted : 2011.09.24
  • Published : 2011.09.30

Abstract

An integrated water quality management of reservoir and river would be required when the quality of downstream river water is affected by the discharge of upstream dam. In particular, for the control of downstream turbidity during flood events, the integrated modeling of reservoir and river is effective approach. This work was aimed to develop a laterally-averaged two-dimensional hydrodynamic and water quality model (CE-QUAL-W2), by which water quality can be predicted in the downstream of Yongdam dam in conjunction with the reservoir model, and to validate the model under two different hydrological conditions; wet year (2005) and drought year (2010). The model results clearly showed that the simulated data regarding water elevation and suspended solid (SS) concentration are well corresponded with the measured data. In addition, the variation of SS concentration as a function of time was effectively simulated along the river stations with the developed model. Consequently, the developed model can be effectively applied for the integrated water quality management of Yongdam dam and downstream river.

Keywords

References

  1. 김윤희, 김범철, 최광순, 서동일(2001). 2차원 수리 수질모델 (CE-QUAL-W2)을 이용한 소양호 수온 성층현상과 홍수기 밀도류 이동 현상의 모델링. 상하수도학회지, 15(1), pp. 40-49.
  2. 박정은, 박석순(2006). 연속적 댐 건설이 하류하처 수온 변화에 미치는 영향 예측을 위한 모델 연구. 공동 추계학술발표회논문집, 대한상하수도학회.한국물환경학회, pp. 855-860
  3. 서동일, 윤종욱, 이재운(2008). QUAL2E, QUAL2K 및 CAP 모델을 이용한 금강 하류 하천구간 정상상태 수질모델링 결과 비교 분석. 상하수도학회지, 22(1), pp. 121-129.
  4. 신영호(2009). 합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향. 한국수자원학회논문집, 42(7), pp. 579-589.
  5. 신재기, 이혜숙, 이승윤(2008). 댐 하류하천의 어류기생충 발생현황 및 해결방안 연구. 공동 추계학술발표회논문집, 대한상하수도학회.한국물환경학회, pp. 554-555.
  6. 이요상, 이광만, 이을래, 박진혁(2009). 하류 하천환경을 고려한 바람직한 댐 운영방향. 학술발표회 초록집, 한국수자원학회, pp. 1989-1993.
  7. 이혜숙, 정선아, 박상영, 이요상(2008). HSPF와 CE-QUALW2 모델의 연계적용을 이용한 용담댐 저수지 탁수현상의 모델연구. 대한환경공학회지, 30(1), pp. 69-78.
  8. 정세웅(2004). 성층화된 저수지로 유입하는 탁류의 공간분포특성 및 연직 2차원 모델링. 대한환경공학회지, 26(90), pp. 970-978.
  9. 정세웅, 박재호, 김유경, 윤성완(2007). 대청호 부영양화 모의를 위한 CE-QUAL-W2 모델의 적용. 수질보전 한국물환경학회지, 23(1), pp. 52-63.
  10. 정세웅, 이흥수, 정용락(2008). 입자크기를 고려한 부력침강저수지 밀도류의 탁도 모델링. 수질보전 한국물환경학회지, 24(3), pp. 365-377.
  11. 정용락, 정세웅, 류인구, 최정규(2008). 대청호와 하류하천 연속시스템의 2차원 수리.수질 모의. 수질보전 한국물환경학회지, 24(5), pp. 581-591.
  12. 정용락, 정세웅, 윤성완, 오동근, 정희영(2009). 저수지 플러싱 방류가 하류 수질에 미치는 영향 모의를 위한 수질모델의 성능 평가. 수질보전 한국물환경학회지, 25(1), pp. 48-57.
  13. 최시중, 서재승, 이동률, 강성규(2009). 용담댐 하류의 하천 수질보전을 위한 필요유량 산정 방안. 학술발표회 초록집, 한국수자원학회, pp. 2148-2152.
  14. 한건연, 이을래(2002). 한강하류부에서의 2차원 수질모형의 개발 및 적용. 한국수자원학회논문집, 35(3), pp. 161-274.
  15. 한국수자원공사(2007). 다목적댐 실무편람.
  16. 허준욱, 김정곤(2009). 용담댐 하류의 하천건강성 평가 및 어류 서식처를 고려한 최적 생태유량 산정. 한국수자원학회논문집, 42(6), pp. 481-491.
  17. 홍성민, 정인균, 이준우, 김성준(2004). SMS를 이용한 경안천 하류구간의 하천흐름 분석. 한국지리정보학회지, 7(1), pp. 94-104.
  18. Berger, C. J., Robert, L., Annear, Jr., and Wells, S. A. (2002). Upper Spokane River Model : Model Calibration, 1991 and 2000, U.S. Army Crops of Engineers.
  19. Camenen, B. (2007). Simple and general formula for the settling velocity of particles. J. Hydr. Eng., 133(2), pp. 229-233. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:2(229)
  20. Chung, S. W. and Gu, R. (1998). Two dimensional simulations of contaminant currents in stratified reservoir. J. Hydr. Eng., 124(7), pp. 704-711. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(704)
  21. Chung. S. W., Hipsey, M. R., and Imberger, J. (2009). Modelling the propatation of turbid density in flows into a stratified lake: Daecheong Reservoir, Korea. Environ. Modell. Softw., 24, pp. 1467-1482. https://doi.org/10.1016/j.envsoft.2009.05.016
  22. Cole, T. M. and Wells, S. A. (2004). CE-QUAL-W2: A Two Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.2 User Manual, Instruction Report EL 03 1, U.S. Army of Engineers. USA.
  23. Cole, T. M. and Wells, S. A. (2008). CE-QUAL-W2: A Two-dimensional, laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.6, Department of Civel and Environmental Engineering, Portland State University, Portland, OR.
  24. Gibbs, R. J. (1985). Settling velocity, diameter, and density for flocs of illite, kaolinite, and montmorillonite. J. of Sedimentary Petrology, 55(1), pp. 65-68.
  25. Manning, A. J. and Dyer, K, R. (1999). A laboratory examination of flock characteristics with regard to turbulent shearing. Mar. Geol., 160, pp. 147-170. https://doi.org/10.1016/S0025-3227(99)00013-4
  26. Oeurng, C., Sauvage, S., Coynel, A., Maneux, E., Etcheber, H., and Sánchez-Pérez, J. (2011). Fluvial transport of suspended sediment and organic carbon during flood events in a large agricultural catchment in southwest France. Hydrol. Process, 25, pp. 2365-2378. https://doi.org/10.1002/hyp.7999
  27. Pedocchi, F. and Garcia, M. H. (2006). Evaluvation of the LISST-ST instrument for suspended particle size distribution and settling velocity measurements. Continental Shelf Research, 26, pp. 943-958. https://doi.org/10.1016/j.csr.2006.03.006
  28. Standford, J. A., Ward, J. V., Liss, W. J., Friddell, C. A., Williams, R. N., Lichatowich, J. A., and Coutant, C. C. (1996). Ageneral protocol for restoration of regulated rivers. Regulated Rivers: Research & Management, 12, pp. 391-413. https://doi.org/10.1002/(SICI)1099-1646(199607)12:4/5<391::AID-RRR436>3.0.CO;2-4
  29. Sullivan, A. B., Rounds, S. A., Sovieszczyk, S., and Bragg, H. M. (2007). Modeling hydrodynamics, water temperature, and suspended sediment in Detroit Lake, Oregon : U.S. Geological Survey Scientific Investigations Report 2007- 2005, VA, USA.
  30. Umeda, M., Yokoyama, K., and Ishikawa, T. (2006). Observation and simulation of floodwater intrusion and sedimentation in the Shichikashuku Reservoir. J. Hydr Eng., 132(9), pp. 881-891. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:9(881)
  31. Vongvixay, A., Grimaldi, C., Gascuel-odoux, C., Laguionie, P., Faucheux, M., Gilliet, N., and Mayet, M. (2010). Analysis of suspended sediment concentration and discharge relations to identify particle origins in small agricultrual watersheds. Proc. of the ICCE Symposium, Warsaw University of Lifesciences, IAHS Publishing, pp. 76-83.
  32. Walling, D. E. (1977). Assissing the Accuracy of Suspended Sediment Rating Curves for a Small Basin. Water Resources Research, 13(3), pp. 531-538. https://doi.org/10.1029/WR013i003p00531