• Title/Summary/Keyword: Yielding Ratio

Search Result 370, Processing Time 0.025 seconds

Yield Formations of Sesame(Sesamum indicum L.) as Affected by Different Conditions of Soil Drainage (토양의 배수조건 차이가 참깨 수량성에 미치는 영향)

  • Choi, H.K.;Goo, J.O.;Kim, Y.Z.;Lee, D.G.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.276-282
    • /
    • 1982
  • To estimate the responses of sesame plant in growth and yielding traits to different soil drainage conditions, a pot trial was conducted by using of sesame variety "Suweon-9" were introduced with 5 different mixing combinations of clay and sea-sand soils as 0:100, 25:75, 50:50, 75:25, and 100:0 percents in volumetric ratio. Also two irrigation methods as 20mm/6 days interval and 10mm/3 days interval were detected. As a result, water drainage was linearly decreased with increament of clay contents. And the excess drainage condition(such as pure sand soil) required more irrigation, however in crop growths, no significant differences among various soil drainage conditions except the pure sand were recognized. On the other hand, number of capsules per plant, among other yielding components, was most contributed factor to the yield, which was effectively given from the soil mixed with clay and sea-sand as 75% and 25%, respectively. Therefore, much similar responses were also detected from the seed yields per a sesame plant. However, the number of seeds per capsule and maturity function were more effectively composed under the soil mixed with clay and sea-sand as 25% and 75% respectively better than under the soil of 75% and 25%. As a conclusion, the yielding responses of sesame plant was advanced more effectively at the soil conditions of water conserved type (e.g. 25%/75% in clay/sand ratio) than of water-draining type (e.g. 75%/25% in clay/sand ratio).nd ratio).

  • PDF

Effect of Rubber Particle Size and Polymer Properties on Impact Strength and Fracture Behavior of Rubber/Polymer Composites (고무입자의 크기와 폴리머의 물성이 고무/폴리머 복합재료의 충격강도 및 파괴거동에 미치는 영향)

  • 이창수;강병일;조길원;황운봉
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.83-89
    • /
    • 1999
  • The impact strength and fracture behavior of rubber/polymer composites were investigated with respect to two factors: (i) characteristic ratio, $C_{\infty}$ as a measure of chain flexibility of the polymer matrix and (ii) the rubber particle size in polymer blend system. In this study C was controlled by the composition ratio of polyphenylene oxide (PPO) and polystyene (PS). Izod impact test and fractographic observation of the fracture surface using scanning electron microscope were conducted. Finite element analysis were carried out to gain understanding of plastic deformation mechanism (shear yielding and crazing) of these materials. Shear yielding was found to be enhanced when the flexibility of matrix polymer was relatively low and the rubber particles were small.

  • PDF

ADDITIVE NATURE OF DIGESTIBLE ENERGY AND RELATIVE ENERGY VALUES OF DIFFERENT ENERGY-YIELDING NUTRIENTS IN PRACTICAL TROUT DIETS

  • Kim, J.D.;Kaushik, S.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.3
    • /
    • pp.231-242
    • /
    • 1990
  • A study is reported which investigated the additive nature of digestible energy (DE) from dietary nutrients and to estimate the relative energy values of different energy-yielding nutrients in practical trout diets. A growth study was conducted over 12 weeks with 6 diets. Rainbow trout (Oncorhynchus mykiss) were fed diets once a day ad libitum. Digestible energy values determined and calculated had direct relationship indicating additive nature of such values for feed ingredients. Overall growth performance was best in a diet containing 33% digestible protein (DP) with a DP/DE ratio of 18.6. A reduction in digestible protein level with the same DP/DE rat io led to a significant decrease in growth and feed efficiency. The increase of 7% of lipid with concomitant decrease in protein resulted in the relative gain of 130% in growth and nutrient retention, suggesting that 1 g of lipid is equal to about 1.3 g of proteins in terms of net energetic value. Replacement of 10% of dietary lipid by carbohydrates led to a slight decrease in energy retention efficiency but to a great increase in lipid retention efficiency (130%) showing that dietary carbohydrates led to increased lipogenesis.

Effect of Strain Aging on Tensile Behavior and Properties of API X60, X70, and X80 Pipeline Steels

  • Lee, Sang-In;Lee, Seung-Yong;Lee, Seok Gyu;Jung, Hwan Gyo;Hwang, Byoungchul
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1221-1231
    • /
    • 2018
  • The effect of strain aging on tensile behavior and properties of API X60, X70, and X80 pipeline steels was investigated in this study. The API X60, X70, and X80 pipeline steels were fabricated by varying alloying elements and thermomechanical processing conditions. Although all the steels exhibited complex microstructure consisting of polygonal ferrite (PF), acicular ferrite, granular bainite (GB), bainitic ferrite (BF), and secondary phases, they had different fractions of microstructures depending on the alloying elements and thermomechanical processing conditions. The tensile test results revealed that yielding behavior steadily changed from continuous-type to discontinuous-type as aging temperature increases after 1% pre-strain. After pre-strain and thermal aging treatment in all the steels, the yield and tensile strengths, and yield ratio were increased, while the uniform elongation and work hardening exponent were decreased. In the case of the X80 steel, particularly, the decrease in uniform elongation was relatively small due to many mobile dislocations in PF, and the increase in yield ratio was the lowest because a large amount of harder microstructures such as GB, BF, and coarse secondary phases effectively enhanced work hardening.

Numerical and analytical investigation of cyclic behavior of D-Shape yielding damper

  • Kambiz Cheraghi;Mehrzad TahamouliRoudsari;Sasan Kiasat;Kaveh Cheraghi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.411-420
    • /
    • 2024
  • The purpose of this research was to investigate the cyclic behavior of the D-shaped dampers (DSD). Similarly, at first, the numerical model was calibrated using the experimental sample. Then, parametric studies were conducted in order to investigate the effect of the radius and thickness of the damper on energy dissipation, effective and elastic stiffness, ultimate strength, and equivalent viscous damping ratio (EVDR). An analytical equation for the elastic stiffness of the DSD was also proposed, which showed good agreement with experimental results. Additionally, approximate equations were introduced to calculate the elastic and effective stiffness, ultimate strength, and energy dissipation. These equations were presented according to the curve fitting technique and based on numerical results. The results indicated that reducing the radius and increasing the thickness led to increased energy dissipation, effective stiffness, and ultimate strength of the damper. On the other hand, increasing the radius and thickness resulted in an increase in EVDR. Moreover, the ratio of effective stiffness to elastic stiffness also played a crucial role in increasing the EVDR. The thickness and radius of the damper were evaluated as the most effective dimensions for reducing energy dissipation and EVDR.

Investigating the use of wollastonite micro fiber in yielding SCC

  • Sharma, Shashi Kant;Ransinchung, G.D.;Kumar, Praveen
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.123-143
    • /
    • 2018
  • Self compacting concrete (SCC) has good flowability, passability and segregation resistance because of voluminous cementitious material & high coarse aggregate to fine aggregate ratio, and high free water availability. But these factors make it highly susceptible to shrinkage. Fibers are known to reduce shrinkage in concrete mixes. Until now for conserving cement, only pozzolanic materials are admixed in concrete to yield a SCC. Hence, this study compares the use of wollastonite micro fiber (WMF), a cheap pozzolanic easily processed raw mineral fiber, and flyash in yielding economical SCC for rigid pavement. Microsilica was used as a complimentary material with both admixtures. Since WMF has large surface area ($827m^2/kg$), is acicular in nature; therefore its use in yielding SCC was dubious. Binary and ternary mixes were constituted for WMF and flyash, respectively. Paste mixes were tested for compatibility with superplasticizer and trials were performed on a normal concrete mix of flexural strength 4.5 MPa to yield SCC. Flexural strength test and restrained shrinkage test were performed on those mixes, which qualified self compacting criteria. Results revealed that WMF admixed pastes have high water demand, and comparable setting times to flyash mixes. Workability tests showed that 20% WMF with microsilica (5-7.5%) is efficient enough in achieving SCC and higher flexural strength than normal concrete at 90 days. Also, stress rate due to shrinkage was lesser and time duration for final strain was higher in WMF admixed SCC which encourages its use in yielding a SCC than pozzolanic materials.

A Lateral Behavior Characteristics of Group Concrete Pile by Model Tests (모형실험에 의한 무리 콘크리트 말뚝의 수평거동 특성)

  • Kwon, Oh-Kyun;Park, Jong-Un;Kim, Jin-Bok;Lim, Dong-Hyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.57-64
    • /
    • 2012
  • The lateral behavior characteristics of concrete group pile under the lateral load were examined by the laboratory model tests in this study. Piles were socketed 1D(D : pile diameter) in the concrete block, and model tests were executed on $2{\times}3$ group piles, of which the length were 11D, 15D and 20D. All results of loading tests under each condition was presented by the lateral load-displacement curves, and the displacements in the ground under the lateral loads were measured. As a results of model tests, as the ratio of pile length/diameter(L/D) was decreased, the yielding load and the lateral displacement at that load were increased. The yielding load was evaluated as the load at lateral displacement of 15 mm. The yielding loads at the pile length of 11D, 15D and 20D were 11.7, 6.2kN and 3.4kN. The lateral displacements of pile in the ground under each condition were measured linearly and the failure occurred at the location where the piles were socketed in concrete block.

Design of Cold Extrusion Dies using Flexible Tolerance Method (플렉시블 허용오차법에 의한 냉간압출 금형설계)

  • Yeo H. T.;Choi Y.;Hur K. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.170-173
    • /
    • 2001
  • The design for cold extrusion dies is very important because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, two assumptions were proposed. First assumption was selected by yielding strength dependent on the to hoop stress of each ring in dies. Second assumption is that the maximum inner pressure is determined when yielding occurs in one ring of dies. To obtain the maximum inner pressure the flexible tolerance method was applied. A comparison of design values between the proposed method and the conventional method has been discussed.

  • PDF

The Compatibility Evaluation of Concrete Repairs under Bending Load (휨하중을 받는 콘크리트 보수재의 적합성기준 평가)

  • 이웅종;정연식;양승규;유재상;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.799-804
    • /
    • 2002
  • The compatibility of concrete repairs is proposed by D. Cusson et al. and N. K. Emberson et al. But this is the general compatibility of concrete repairs. This study is actualized the general compatibility of concrete repairs on the flexural specimen under bending load. This study is obtained following results. 1) As a results of analysis for repair effects on failure shape, debonding between concrete and repairs, yielding load and ultimate/yielding ratio, the repair effects is ascertained that the repair R3 is much excellent than the repair R7, but on the other hand R7 is very high than R3 on the viewpoint of compressive strength, where repair R7, R3 is a product. 2) Therefore the compatibility of concrete repair proposed by D. Cusson et al. and N. K. Emberson et al. must be reanalyzed for structures types of column, beam, wall, slab et al.

  • PDF

The Strut-and-Tie Models for Shear Dominant R/C Members considering Plastic Deformations (소성 변형을 고려한 전단 지배 부재의 스트럿-타이 모델)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.145-152
    • /
    • 2005
  • This paper presents a deformable strut-and-tie model of determining the shear strengths and ultimate deformations of the shear-dominant reinforced concrete members. The proposed model originates from the strut-and-tie model concept and satisfies equilibrium, compatibility, constitutive laws, and the geometric conditions of shear deformation. This study attempts to apply deformation patterns to strut-and-tie models. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The validity and accuracy of the proposed model is then tested against available experimental data. The parameters reviewed include the ratios of truss action and arch action, the reinforcement ratios, and the shear span-depth ratio. It is expected that this model can be applied to displacement-based design methods.

  • PDF