• Title/Summary/Keyword: Yield-Strength-Mismatch

Search Result 13, Processing Time 0.029 seconds

Decomposition of Interfacial Crack Driving Forces in Dissimilar Joints

  • Kim, Yun-Jae;Lee, Hyung-Yil
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.30-38
    • /
    • 2000
  • This paper presents a framework how to estimate crack driving forces in terms of crack-tip opening displacement and J-integral for mismatched dissimilar joints with interface cracks. The mismatch in elastic, thermal, and plastic hardening properties is not considered, but the mismatch in plastic yield strengths is emphasized here. The main outcome of the present work is that the existing methods to estimate crack driving forces for homogeneous materials can be used with slight modification. Such modification includes (i) mismatch- corrected limit load solutions, and (ii) evaluating the contribution of each material in dissimilar joints to the total crack driving force, which depends on the strength mismatch of the dissimilar joints.

  • PDF

Stress Fields Along Semi-Elliptical Interfacial Crack Front with Yield-Strength-Mismatch (항복강도 불일치 반타원 계면균열 선단에서의 응력장)

  • Choi, Ho-Seung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.126-137
    • /
    • 2003
  • Many research works have been performed on the J-T approach for elastic-plastic crack-tip stress fields in a variety of plane strain specimens. To generalize the validity of J-T method, further investigations are however needed fur more practical 3D structures than the idealized plane strain specimens. The present study deals mainly with 3D finite element (FE) modeling of welded plate and straight pipe, and accompanying elastic, elastic-plastic FE analyses. Manual 3D modeling is almost prohibitive, since the models contain semi-elliptical interfacial cracks which require singular elements. To overcome this kind of barrier, we develop a program generating the meshes fur semi-elliptical interfacial cracks. We then compare the detailed 3D FE stress fields to those predicted with J-T two parameters. The validity of J-T approach is thereby extended to 3D yield-strength-mismatched weld joints, and useful information is inferred fur the design or assessment of pipe welds.

Welded plate and T-stub tests and implications on structural behavior of moment frame connections

  • Dong, P.;Kilinski, T.
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.35-50
    • /
    • 2002
  • A series of tests on simple-welded plate specimens (SWPS) and T-stub tension specimens simulating some of the joint details in moment frame connections were conducted in this investigation. The effects of weld strength mismatch and weld metal toughness on structural behavior of these specimens were considered under both static and dynamic loading conditions. Finite element analyses were performed by taking into account typical weld residual stress distributions and weld metal strength mismatch conditions to facilitate the interpretation of the test results. The major findings are as follows: (a) Sufficient specimen size requirements are essential in simulating both load transfer and constraint conditions that are relevant to moment frame connections, (b) Weld residual stresses can significantly elevate stress triaxiality in addition to structural constraint effects, both of which can significantly reduce the plastic deformation capacity in moment frame connections, (c) Based on the test results, dynamic loading within a loading rate of 0.02 in/in/sec, as used in this study, premature brittle fractures were not seen, although a significant elevation of the yield strength can be clearly observed. However, brittle fracture features can be clearly identified in T-stub specimens in which severe constraint effects (stress triaxiality) are considered as the primary cause, (d) Based on both the test and FEA results, T-stub specimens provide a reasonable representation of the joint conditions in moment frame connections in simulating both complex load transfer mode and constraint conditions.

J and CTOD Estimation for Homogeneous and Bi-Material Fracture Toughness Testing Specimens

  • Lee, Hyungyil;Kim, Yun-Jae
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1079-1089
    • /
    • 2001
  • This paper proposes J and CTOD estimation schemes applied to fracture toughness testing, covering typical homogeneous and bi-material specimens. Recommendations are based on the plastic limit analysis (either slip line field or finite element limit analyses), assuming the rigid plastic material behavior. The main outcome of the present study is that the J and CTOD estimation schemes (both codified and non-codified), recommended for homogeneous specimens, can be equally used for bi-material specimens with interface cracks. The effect of yield strength mismatch in bi-material specimens on the J-integral CTOD is discussed.

  • PDF

Effect of Porous Substrate on the Strength of Asymmetric Structure

  • Kim, Chul;Park, Sang Hyun;Kim, Taewoo;Lee, Kee Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.417-422
    • /
    • 2015
  • In this study, we investigate the effect of porous $Al_2O_3$ substrate on the strengths of asymmetric structures after we prepare such a structure consisting of a dense $Li_2ZrO_3$ top layer and porous $Al_2O_3$ substrate layer. The porosity and elastic modulus of the substrate layer are controlled by sintering temperature, which has three values of 1150, 1250 and $1350^{\circ}C$. The porosity is controlled in the range of ~ 30-50 vol%, elastic modulus is ~80-120 GPa and elastic mismatch $E_s/E_c$ is ~ 0.6-1.0. Indentation stress-strain curves are obtained and analyzed to evaluate the yield stress of the asymmetric structure by concentrated local loading of WC balls. Conventional flexural strengths are also obtained to evaluate the strength of the asymmetric structure. The results indicate that the local yield strength of the asymmetric structure has mid-values between the top and the substrate layer; however, the flexural strength of the asymmetric structure are mainly influenced by elastic modulus and strength of the substrate.

Strength Analysis of Particle-Reinforced Aluminum Composites with Length-Scale Effect based on Geometrically Necessary Dislocations (기하적 필수 전위에 의한 길이효과를 고려한 입자 강화 알루미늄 복합재의 강도해석)

  • Sub, Y.S.;Kim, Y.B.;Rhee, Z.K.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.482-487
    • /
    • 2009
  • A finite element based microstructural modeling for the size dependent strengthening of particle reinforced aluminum composites is presented. The model accounts explicitly for the enhanced strength in a discretely defined "punched zone" around the particle in an aluminum matrix composite as a result of geometrically necessary dislocations developed through a CTE mismatch. The density of geometrically necessary dislocations is calculated considering volume fraction of the particle. Results show that predicted flow stresses with different particle size are in good agreement with experiments. It is also shown that 0.2% offset yield stresses increases with smaller particles and larger volume fractions and this length-scale effect on the enhanced strength can be observed by explicitly including GND region around the particle. The strengths predicted with the inclusion of volume fraction in the density equation are slightly lower than those without.

Strength Analysis of Particle-Reinforced Composites with Length-Scale Effect based on Geometrically Necessary Dislocations (기하적 필수 전위에 의한 길이효과를 고려한 입자 강화 복합재의 강도해석)

  • Suh, Y.S.;Joshi, Shailendra P.;Ramesh, K.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.322-325
    • /
    • 2009
  • An enhanced continuum model for the size dependent strengthening of particle reinforced composites is presented. The model accounts explicitly for the enhanced strength in a discretely defined "punched zone" around the particle in a metal matrix composite as a result of geometrically necessary dislocations developed through a CTE mismatch. The size of the punched zone presents an intrinsic length scale, and this results in the size dependence of the overall behavior of the composite. Results show that predicted 0.2% offset yield stresses are increasing with smaller inclusions and larger volume fractions and this length-scale effect on the enhanced strength can be observed by explicitly including GND region around the particle.

  • PDF

Numerical Assessment of Dislocation-Punching Theories for Continuum Structural Analysis of Particle-Reinforced Metal Matrix Composites (입자 강화 금속기지 복합재의 연속체 강도해석을 위한 전위 펀칭 이론의 전산적 평가)

  • Suh, Yeong-Sung;Kim, Yong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.273-279
    • /
    • 2011
  • The yield strength of particle-reinforced composites increases as the size of the particle decreases. This kind of length scale has been mainly attributed to the geometrically necessary dislocation punched around the particle as a result of the mismatch of the thermal expansion coefficients of the particle and the matrix when the composites are cooled down after consolidation. In this study, two dislocation-punching theories that can be used in continuum structural modeling are assessed numerically. The two theories, presented by Shibata et al. and Dunand and Mortensen, calculate the size of the dislocationpunched zone. The composite yield strengths predicted by finite element analysis were qualitatively compared with experimental results. When the size of the particle is less than $2{\mu}m$, the patterns of the composite strength are quite different. The results obtained by Shibata et al. are in qualitatively better agreement with the experimental results.

Thermal residual stress behavior in fiber metal laminates (섬유금속적층판의 경화 시 발생하는 열 잔류응력에 관한 연구)

  • Kim, Se-Young;Choi, Won-Jong;Park, Sang-Yoon;Moon, Cho-Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.39-44
    • /
    • 2005
  • Due to mismatch of thermal expansion coefficients between aluminum sheet and glass/epoxy sheet, thermal residual stresses generally appear in the FML. These stresses will affect the yield and fatigue strength of the FML. The numerically determined residual stresses in the Fiber-Metal-Laminates(FML) have been compared to the residual stresses measured from the curvature and tensile test methods. These two experimental methods have been developed for assessing the influence of residual stress in FML. Post-stretching process has been applied to remove the thermal residual stress and reverse the stress distribution. After post-stretching process, the residual stress has been measured from experiments. The results obtained show that analytical and experimental data are well agreed. The thermal residual stress can be removed by post-stretching process and it will increase the yield strength of FML.

Metal/$Al_2O_3-SiO_2$ System Interface Investigations

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.70-73
    • /
    • 2004
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics (Al$_2$O$_3$-SiO$_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a Cu/Al$_2$O$_3$-SiO$_2$ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF