• Title/Summary/Keyword: Yield response factor

Search Result 145, Processing Time 0.025 seconds

Optimization of Medium Composition for Biomass Production of Lactobacillus plantarum 200655 Using Response Surface Methodology

  • Choi, Ga-Hyun;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.717-725
    • /
    • 2021
  • This study aimed to optimize medium composition and culture conditions for enhancing the biomass of Lactobacillus plantarum 200655 using statistical methods. The one-factor-at-a-time (OFAT) method was used to screen the six carbon sources (glucose, sucrose, maltose, fructose, lactose, and galactose) and six nitrogen sources (peptone, tryptone, soytone, yeast extract, beef extract, and malt extract). Based on the OFAT results, six factors were selected for the Plackett-Burman design (PBD) to evaluate whether the variables had significant effects on the biomass. Maltose, yeast extract, and soytone were assessed as critical factors and therefore applied to response surface methodology (RSM). The optimal medium composition by RSM was composed of 31.29 g/l maltose, 30.27 g/l yeast extract, 39.43 g/l soytone, 5 g/l sodium acetate, 2 g/l K2HPO4, 1 g/l Tween 80, 0.1 g/l MgSO4·7H2O, and 0.05 g/l MnSO4·H2O, and the maximum biomass was predicted to be 3.951 g/l. Under the optimized medium, the biomass of L. plantarum 200655 was 3.845 g/l, which was similar to the predicted value and 1.58-fold higher than that of the unoptimized medium (2.429 g/l). Furthermore, the biomass increased to 4.505 g/l under optimized cultivation conditions. For lab-scale bioreactor validation, batch fermentation was conducted with a 5-L bioreactor containing 3.5 L of optimized medium. As a result, the highest yield of biomass (5.866 g/l) was obtained after 18 h of incubation at 30℃, pH 6.5, and 200 rpm. In conclusion, mass production by L. plantarum 200655 could be enhanced to obtain higher yields than that in MRS medium

Differences in Growth and Photosynthesis among Three Half-sib Families of Betula schmidtii in Response to Cd Treatment (카드뮴 처리에 대한 박달나무의 가계간 생장과 광합성 차이)

  • 오창영;이경준;이재천;한심희
    • The Korean Journal of Ecology
    • /
    • v.27 no.3
    • /
    • pp.147-153
    • /
    • 2004
  • The objective of this study was to understand differences among three half-sib families of Betula schmidtii seedlings in the effect of three Cd levels on growth and photosynthesis. One-year-old seedlings of B. schmidtii were treated with 0, 0.4 and 0.8 mM CdSO$_4$ㆍ8/3$H_2O$ for two months. Growth and physiological responses to Cd treatment levels of three families determined using dry weight, relative height growth rate(RHGR), apparent quantum yield and carboxylation efficiency. The B. schmidtii seedlings exposed to 0.4 and 0.8 mM Cd showed statisticall significant decrease in dry weight and RHGR relative to controls. In addition, the growth inhibition of B. schmidtii seedlings was accompanied by a significant decrease in net photosynthesis measured as $CO_2$ assimilation. Apparent quantum yield and carboxylation efficiency were also affected by Cd treatment, undergoing a significant and progressive reduction with increasing Cd concentrations in all families. We also found significant difference among three families of B. schmidtii in growth, biomass and photosynthesis when exposed to Cd stress. Therefore the present study showed that the difference in Cd tolerance among families might be attributed to genetic factor in response to Cd stress.

Optimization of Organosolv Pretreatment of Waste Wood for Lignin Extraction (폐목재로부터 리그닌 추출을 위한 Organosolv 전처리공정의 최적화)

  • Lee, Hyunsu;Kim, Young Mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.568-574
    • /
    • 2017
  • The purpose of this study was to optimize experimental conditions (time ($X_1$) (ranging of 26.36 - 93.64 min), concentration of sulfuric acid ($X_2$) (ranging of 0-2.5%) and temperature ($X_3$) (ranging of $136.4-203.6^{\circ}C$) for an organosolv pretreatment process to extract lignin from waste wood. The resulting quadratic model equation using RSM (response surface methodology) represented y (lignin yield) = $-79.89+0.91X_1+9.8X_2-2.54{\times}10^{-3}X_1{^2}-2.11X_2{^2}$. The $R^2$ (coefficient of determination) value of 0.8531 for a model indicates this model has statistically significant predictors at the 10% levels. The predictive results optimized by quadratic model produced a lignin yield of 12.46 g/100 g of dry wood under conditions of $178.2^{\circ}C$ and 2.32% $H_2SO_4$. The lignin yield was more affected by the acid catalyst concentrations than the reaction temperature, but the reaction time was not an influential factor for improving lignin extraction from waste wood in this organosolv pretreatment. According to ANOVA (analysis of variance), the significance probability (p-value) of model was smaller than 0.001 and simulation of obtained model equations showed a good reproducibility based on actual organosolv tests under optimal conditions.

Stress Day Index to Predict Soybean Yield Response by Subsurface Drainage in Poorly Drained Sloping Paddy Fields (배수불량 경사지 논에서 배수개선에 따른 콩의 수분스트레스 반응해석)

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Park, Ki-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.702-708
    • /
    • 2011
  • There are considerable areas of wet paddy fields in Korea that requires improvement of its drainage system. In poorly drained sloping paddy fields, upland crops can be damaged by either rainfall or capillary rise of the water table caused by percolating water beneath the upper fields during summertime rainy season. The purpose of this study is to evaluate excess water stress of soybean yield by drainage systems. Four drainage methods namely open ditch, vinyl barrier, pipe drainage and tube bundle were installed within 1-m position at the lower edge of the upper paddy fields. Stress Day Index (SDI) approach was developed to quantify the the cumulative effect of stress imposed on a soybean yield throughout the growing season. SDI was determined from a stress day factor (SD) and a crop susceptibility factor (CS). The stress day factor is a measure degree and duration of stress of the ($SEW_{30}$). The crop susceptibility factor (CS) depends of a given excess water on crop stage. The results showed that SDI used to represent the moisture stress index was most low on the pipe drainage 64.75 compared with the open ditch 355.4, vinyl barrier 271.55 and tube bundle 171.55. Soybean grain yield increased continuously with the rate of 3% in Vinyl Barrier, 32% in Pipe Drainage and 16% in Tube Bundle.

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF

Growth and Yield Responses of Soybean Cultivars to Drought Stress at Early Growth Stage (콩 생육초기 수분 장애에 따른 생육 및 수량 반응의 품종간 차이)

  • Yang Moon, Jin;Hong-Suk Lee;Suk Ha, Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.2
    • /
    • pp.220-227
    • /
    • 1997
  • Water deficit stress during early soybean[Glycine max (L.) Merrill] growth stage is the most important environmental factor limiting productivity. Eight soybean genotypes were grown in replicated pot under well-watered(control: near 0 bar) and drought(-5 and -10 bars) conditions. Soybean plants were subject to drought stress for 20 days at 10 days after seed emergence. Significant genotypic variation was observed for leaf area(LA) and total dry weight (TDW). At the end of water stress, LA and TDW of Hwanggeumkong and Paldalkong, which had large LA in the non-stressed control, were more sensitive to water stress than those of the other cultivars, while those of Suwon 93 with small LA were insensitive. Leaf proline and abscisic acid(ABA) contents increased after water stress. However, changes in proline and ABA contents were not consistently related to the changes in LA as affected by water stress. As the soil water potential decreased, the yield reduction of Hodgson 78 showing large decrease in LA and TDW in response to water deficit was severe when compared to that of Baegunkong with small decrease in LA and TDW. Relatively greater yield stability and higher average yield across soil water potential were observed in Baegunkong. Of specific interest was the small reduction in yield of Paldalkong in spite of its significant decrease in LA and TDW.

  • PDF

Studies on the Grazing Behavior on Mixture Pasture I. Grazing cattle`s paratabiility through grazing time method in response to differente sward height (혼파초지에서 가축의 방목행동에 관한 연구 I. 채식시간법에 의한 초고별 방목우의 채색기호성)

  • 김성우;전병태;신재순;황석중
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.9 no.2
    • /
    • pp.88-95
    • /
    • 1989
  • This experiment 'was conducted to investigate the grazing cattle's palatability by the method of grazing time on the pasture dominated orchardgrass and on the pasture dominated perennial ryegrass from June to October, 1987. The experiment was carried out on the experimental field at Livestock Ex- Experiment Station. The results are summarized as follows: 1. In summer, the grazing time on the pasture dominated orchardgrass increased in 49.7 min, 57.4 min, 102 min, 118.7 min, respectively as sward height decreased in 50 cm, 45 cm, 35 cm, 23 cm, respectively and their correlation coefficiet was -0.9722*(P <0.05). 2. In autumn, the grazing time on the pasture dominated perennial ryegrass decreased in 182 min, 98.5 min, 49.4 min, 31.9 min, respectively as sward height decreased in 43 cm, 34 cm, 25 cm, 18 cm, respectively and their correlation coefficient was 0.9684*. (P <0.05). 3. Grazing time increased as sward height increased on the pasture dominated perennial ryegrass because the composition rate of orchardgrass and red clover which were palatability on the plot of the high sward height.was many. It was suggested that the factor that could be first related to palatability on mixture pasture was the factor of species than the factor of sward height. 4. When the eating rate on the plot of the low sward height was over 55% as the grazing day went by, it gradually decreased because the eating rate on it was high but the fresh yield was low. After all it seemed that it affected palatability because forage availability on the plot of the low sward height was degenerating.

  • PDF

Bearing Capacity of Driven H-Piles in Embankment (성토지반에 타입된 H형강 말뚝의 지지거동)

  • 박영호;정경자;김성환;유성근;이재혁;박종면
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.173-182
    • /
    • 2000
  • To find axial and lateral responses of impact-driven H piles in embankment(SM), the H piles are instrumented with electric strain gages, dynamic load test is performed during driving, and then the damage of strain gages is checked simultaneously. Axially and laterally static load tests are performed on the same piles after one to nine days as well. Then load-settlement behavior is measured. Furthermore, to find the set-up effect in H pile, No. 4, 16, 26, and R6 piles are restriked about 1, 2, and 14 days after driving. As results, ram height and pile capacity obtained from impact driving control method become 80cm and 210.3∼242.3ton, respectively. At 15 days after driving, allowable bearing capacity by CAPWAP analysis, which 2.5 of the factor of safety is applied for ultimate bearing capacity, increases 10.8%. Ultimate bearing capacity obtained from axially static load test is 306∼338ton. This capacity is 68.5∼75.7% at yield force of pile material and is 4∼4.5 times of design load. Allowable bearing capacity using 2 of the factor of safety is 153∼169ton. Initial stiffness response of the pile is 27.5ton/mm. As the lateral load increases, the horizontal load-settlement behaves linearly to which the lateral load reaches up to 17ton. This reason is filled with sand in the cavity formed between flange and web during pile driving. As the result of reading with electric strain gages, flange material of pile is yielded at 19ton in horizontal load. Thus allowable load of this pile material is 9.5ton when the factor of safety is 2.0. Allowable lateral displacement of this pile corresponding to this load is 23∼36mm in embankment.

  • PDF

Inelastic behavior of systems with flexible base

  • Fernandez-Sola, Luciano R.;Huerta-E catl, Juan E.
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.411-424
    • /
    • 2018
  • This study explores the inelastic behavior of systems with flexible base. The use of a single degree of freedom system (ESDOF) with equivalent ductility to represent the response of flexible base systems is discussed. Two different equations to compute equivalent ductility are proposed, one which includes the contribution of rigid body components, and other based on the overstrength of the structure. In order to asses the accuracy of ESDOF approach with the proposed equations, the behavior of a 10-story regular building with reinforced concrete (RC) moment resisting frames is studied. Local and global ductility capacity and demands are used to study the modifications introduced by base flexibility. Three soil types are considered with shear wave velocities of 70, 100 and 250 m/s. Soil-foundation stiffness is included with a set of springs on the base (impedance functions). Capacity curves of the building are computed with pushover analysis. In addition, non linear time history analysis are used to asses the ductility demands. Results show that ductility capacity of the soil-structure system including rigid body components is reduced. Base flexibility does not modify neither yield and maximum base shear. Equivalent ductility estimated with the proposed equations is fits better the results of the numerical model than the one considering elastoplastic behavior. Modification of beams ductility demand due to base flexibility are not constant within the structure. Some elements experience reduced ductility demands while other elements experience increments when flexible base is considered. Soil structure interaction produces changes in the relation between yield strength reduction factor and structure ductility demand. These changes are dependent on the spectral shape and the period of the system with fixed and flexible base.

Studies on Growth Responses and Yields of Panax ginseng C. A. Meyer Grown under Hydroponic Culture with different Temperatures and Growth Stages (온도 및 생육시기에 따른 수경재배 인삼의 생장특성과 수량에 관한 연구)

  • Lee, Gyeong-A;Chang, Yoon-Kee;Park, Seong-Yong;Kim, Gyeong-Ae;Kim, Sun-Ho;Song, Beom-Heon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.3
    • /
    • pp.184-189
    • /
    • 2012
  • This study was carried out to have the basic and applied informations relating to increase the productivity and quality of ginseng. 2 years-old ginseng was cultivated under hydroponic culture with the controlled environment conditions in a greenhouse. Major growth characters and yields were investigated with two different temperatures and several growth stages. The plant height and stem diameter were higher at low temperature than those at high temperature. They were not clearly different with six different growth stages. The root length was not clearly different between two temperatures; however it was continuously grown from June until August. The root diameter was higher at low temperature than that at high temperature. It was rapidly increased from June until August. The length, width, and area of leaf were higher at low temperature than those at high temperature. The fresh and dry weights of different plant tissues were also heavier at low temperature than those at high temperature. The moisture content of ginseng root was continuously decreased from June until August. The yield of ginseng was higher at low temperature compared to that at high temperature. The cultivating conditions in hydroponic culture of ginseng, especially temperature, would be an important factor to have better growth and production.