DOI QR코드

DOI QR Code

Stress Day Index to Predict Soybean Yield Response by Subsurface Drainage in Poorly Drained Sloping Paddy Fields

배수불량 경사지 논에서 배수개선에 따른 콩의 수분스트레스 반응해석

  • 정기열 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 윤을수 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 박창영 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 황재복 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 최영대 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 박기도 (농촌진흥청 녹색미래전략팀)
  • Received : 2011.09.08
  • Accepted : 2011.10.18
  • Published : 2011.10.31

Abstract

There are considerable areas of wet paddy fields in Korea that requires improvement of its drainage system. In poorly drained sloping paddy fields, upland crops can be damaged by either rainfall or capillary rise of the water table caused by percolating water beneath the upper fields during summertime rainy season. The purpose of this study is to evaluate excess water stress of soybean yield by drainage systems. Four drainage methods namely open ditch, vinyl barrier, pipe drainage and tube bundle were installed within 1-m position at the lower edge of the upper paddy fields. Stress Day Index (SDI) approach was developed to quantify the the cumulative effect of stress imposed on a soybean yield throughout the growing season. SDI was determined from a stress day factor (SD) and a crop susceptibility factor (CS). The stress day factor is a measure degree and duration of stress of the ($SEW_{30}$). The crop susceptibility factor (CS) depends of a given excess water on crop stage. The results showed that SDI used to represent the moisture stress index was most low on the pipe drainage 64.75 compared with the open ditch 355.4, vinyl barrier 271.55 and tube bundle 171.55. Soybean grain yield increased continuously with the rate of 3% in Vinyl Barrier, 32% in Pipe Drainage and 16% in Tube Bundle.

경사지 논토양에서 밭작물 재배확대를 위한 합리적인 배수개선 방법을 개발하기 위하여 "배수불량"인 경사지 논토양 (경사 7-15%, 지산통)을 대상으로 배수조건에 따라 "매우불량"인 논 2개 필지, "약간불량"인 논 2개 필지의 논둑 아래 기저부에 1열로 명거 (겉도랑 배수), 비닐차단막, 암거 (속도랑 배수), 관다발 등 네 가지 종류의 배수시설을 설치하여 배수개선 방법에 따른 콩의 수분 스트레스 반응 해석을 통한 배수개선 효과를 비교 분석한 결과 다음과 같은 결론을 얻었다. 배수시설 설치 후 콩 생육기간 중 지표 하 30 cm를 초과한 일평균 지하수위의 합계 ($SED_{30}$)는 명거배수가 147일로 높게 나타난 반면 암거배수가 31일로 나타났다. 또한 지하수위 30 cm를 초과한 수위의 합 ($SED_{30}$)은 명거배수 처리구가 2,207 mm, 비닐차단막 1,938 mm, 관다발 1,262 mm로 밭작물의 수분 스트레스 지표인 1,000 mm 보다 초과하였으나 암거배수 처리구에서는 444 mm 한계 스트레스 지표보다 낮은 경향을 보였다. 배수방법별 콩의 생육기간 중 수분 스트레스 지표 (SDI)는 명거배수 처리구 355.40, 비닐차단막 271.55, 관다발 171.55로 높은 경향을 보여 과습에 의한 영향을 가장 많이 받은 것으로 나타났으나, 암거배수 처리구에서는 64.75로 배수개선 효과가 가장 높은 것으로 나타났다. 배수개선에 따른 콩 수량은 배수 약간불량지가 배수 매우불량지에 비해 높았으며, 배수 약간불량지에 비해 매우불량지에서 배수방법별 수량변화의 차이가 크게 나타났다. 또한 명거배수 처리구 $1,585kg\;ha^{-1}$에 비해 암거배수 $2,086kg\;ha^{-1}$로 32%, 비닐차단막 $1,633kg\;ha^{-1}$로 3%, 관다발 처리구 $1,922kg\;ha^{-1}$로 21% 증수되었으며, 암거배수처리구가 다른 배수방법에 비해 통계적 유의성이 인정되었다. 따라서 "배수불량"인 경사지 논에서는 논둑 밑 1열의 암거배수시설을 설치로 논에서 밭작물의 안정적인 생산과 농지자원의 이용전환 즉 논을 밭으로 이용해야 하는 범용농지 기반조성에 조성을 위한 저비용의 실용적인 배수개선방법개발에 기여할 것으로 본다.

Keywords

References

  1. Box, J.E.Jr. 1991. The effect of waterloogging on rooting intermittent flooding on germination and seeding growth of cotton. Trans. ASAE. 14:567-570.
  2. Cannell, R.Q. and M.B. Jackson. 1981. Alleviating aeration stress. p. 141-192. In G.f. Arkin and H.M. Talors (ed) Modifying the root environment to reduce crop stress. ASAE. St.Joseph. MI.
  3. Desmond, E.D., G.F. Barkle, and G.O. Schwab. 1985. Soybean yield response to excess water ASAE. Pap. No.85-2562. ASAE. St Joseph. MI.
  4. Evans, R.O., R.W. Skaggs, and R.E. Sneed. 1990. Normalized crop susceptibility factors for corn and soybean yield under high water table condition. Ph. D. diss. North Carolina State Univ.
  5. Evans, R.O., R.W. Skaggs, and R.E. Sneed. 1991. Stress say index models to predict corn and Soybean relative yield under high water table condition. Trans. ASAE. 34:1997-2005. https://doi.org/10.13031/2013.31829
  6. Fehr, W.R., C.E. Caviness, D.T. Burmood, and J.S. Pennington. 1971. Stage of development description for soybeans. Glycine max (L.) Merrill. Crop Sci. 11:929-931.
  7. Hiler, E.A. 1969. Quantitative evaluation of crop drainage requirements. Trans. ASAE. 12:499-805. https://doi.org/10.13031/2013.38876
  8. Hardjoamidjojo. S. and R.W Skaggs. 1982. Predicting the effects of drainage systems on corn yields. Agricultural Water Management. 5(2):127-144 https://doi.org/10.1016/0378-3774(82)90002-6
  9. Hiler, E.A. 1969. Quantitative evaluation of crop-drainage requirements. Trans. ASAE. 12(4):499-505. https://doi.org/10.13031/2013.38876
  10. Hiler, E.A. 1976. Drainage requirements of crops Proc. ASEA, Third national Drainage Symposium. ASAE. p.127-129.
  11. Griffin, J.L. and A.M. Saxton. 1988. Response of soild-seeded soybean to flood irrigation. Flood duration. Agron. J. 80:885-888. https://doi.org/10.2134/agronj1988.00021962008000060009x
  12. Sieben, W.H. 1964. Relation of drainage conditions and crop yields on young light clay soils in the yssellake polders. Van Zee tot Land, No. 40.
  13. Scott, H.D., J. DeAngulo, M.B. Deniels, and L.S. Wood. 1989. Flood duration effect on soybean growth and yield. Agron. J. 81:631-636. https://doi.org/10.2134/agronj1989.00021962008100040016x
  14. Plamenac, N. 1988. Effects of subsurface drainage on heavy hydromorphic soil in the Nelindvor area, Yugoslavia. AWM. 14:19-27.
  15. Skaggs, R.W. 1978. A water management model for shallow water table soils, Rep. No. 134, Water Resour. Res. Inst. Univ. North Carolina. p. 178.
  16. Wesseling, J. 1974. Crop growth and wet soils. p. 39-90. In J. van Schitfgaard (Ed) Drainage for Agriculture. Agron. Monogr. 17.ASA. Madison. WI.

Cited by

  1. The growth and yield changes of foxtail millet ( L.), proso millet ( L.), sorghum ( L.), adzuki bean ( L.), and sesame ( L.) as affected by excessive soil-water vol.43, pp.4, 2016, https://doi.org/10.7744/kjoas.20160056
  2. Interspecific Differences of the Capacities on Excessive Soil Moisture Stress for Upland Crops in Converted Paddy Field vol.49, pp.2, 2016, https://doi.org/10.7745/KJSSF.2016.49.2.157
  3. Growth and Yield Components Responses to Delayed Planting of Soybean in Southern Region of Korea vol.59, pp.4, 2014, https://doi.org/10.7740/kjcs.2014.59.4.483
  4. Response of Millet and Sorghum to Water Stress in Converted Poorly Drained Paddy Soil vol.46, pp.6, 2013, https://doi.org/10.7745/KJSSF.2013.46.6.409
  5. Effects of the Drainage Methods on Phenolic Compounds and Radical Scavenging Activity of Foxtail Millet and Proso Millet vol.59, pp.3, 2014, https://doi.org/10.7740/kjcs.2014.59.3.282
  6. Effects of the Drainage Methods on Antioxidant Compounds and Antioxidant Activity of Ethanolic Extracts on Adzuki Bean vol.59, pp.3, 2014, https://doi.org/10.7740/kjcs.2014.59.3.350