DOI QR코드

DOI QR Code

Optimization of Organosolv Pretreatment of Waste Wood for Lignin Extraction

폐목재로부터 리그닌 추출을 위한 Organosolv 전처리공정의 최적화

  • Lee, Hyunsu (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Young Mo (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology)
  • 이현수 (광주과학기술원 지구환경공학부) ;
  • 김영모 (광주과학기술원 지구환경공학부)
  • Received : 2017.08.11
  • Accepted : 2017.10.17
  • Published : 2017.10.31

Abstract

The purpose of this study was to optimize experimental conditions (time ($X_1$) (ranging of 26.36 - 93.64 min), concentration of sulfuric acid ($X_2$) (ranging of 0-2.5%) and temperature ($X_3$) (ranging of $136.4-203.6^{\circ}C$) for an organosolv pretreatment process to extract lignin from waste wood. The resulting quadratic model equation using RSM (response surface methodology) represented y (lignin yield) = $-79.89+0.91X_1+9.8X_2-2.54{\times}10^{-3}X_1{^2}-2.11X_2{^2}$. The $R^2$ (coefficient of determination) value of 0.8531 for a model indicates this model has statistically significant predictors at the 10% levels. The predictive results optimized by quadratic model produced a lignin yield of 12.46 g/100 g of dry wood under conditions of $178.2^{\circ}C$ and 2.32% $H_2SO_4$. The lignin yield was more affected by the acid catalyst concentrations than the reaction temperature, but the reaction time was not an influential factor for improving lignin extraction from waste wood in this organosolv pretreatment. According to ANOVA (analysis of variance), the significance probability (p-value) of model was smaller than 0.001 and simulation of obtained model equations showed a good reproducibility based on actual organosolv tests under optimal conditions.

본 연구는 폐목재로부터 organosolv 공정을 이용해서 리그닌을 분리할 때 영향을 미치는 주요 3개의 반응조건(반응시간($X_1$), 산 촉매의 농도($X_2$) 및 반응온도($X_3$))을 리그닌 회수율(y) 기준으로 최적화하였다. 중심합성계획법(central composite design, CCD)에 따라 반응온도 $136.4-203.6^{\circ}C$, 산촉매 농도 0-2.5%, 반응시간 26.36-93.64 분의 범위를 가진 실험계획을 수행해서 2차 모델식 및 최적조건을 수립하였다. 2차 모델식은 $y=-79.89+0.91X_1+9.8X_2-2.54{\times}10^{-3}X_1{^2}-2.11X_2{^2}$와 같이 얻었으며, 결정계수(coefficient of determination, $R^2$) 값은 0.8531으로 10% 이내의 유의수준에서 유의성을 나타냈다. 2차 모델식에 따라 예측되는 최고 리그닌 회수율은 12.46 g/100 g of dry wood이며 이때 최적 반응 조건은 반응온도 $178.2^{\circ}C$, 산 촉매 농도 2.32%으로 나타났다. 폐목재 대상 organosolv 공정에서의 리그닌 수율은 반응온도보다는 산 촉매 농도의 영향이 더 크게 나타났으며 반응시간에 의한 영향은 없는 것으로 나타났다. 모델의 변동성 분석(analysis of variance, ANOVA)에 따르면 리그닌 수율(y)에 대한 모델식의 유의확률은 p<0.001로 높은 유의성을 보였다. 최적조건에서 모델의 재현성을 검증한 결과 모델식이 실제공정을 적절하게 모사한 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 국토교통부

References

  1. Jorgensen, H., Kristensen, J. B. and Felby, C., "Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities," Biofuels. Bioprod. Biorefin., 1(2), 119-134(2007). https://doi.org/10.1002/bbb.4
  2. Akhtar, N., Gupta, K., Goyal, D. and Goyal, A., "Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass," Environ. Prog. Sustain. Energy, 35(2), 489-511(2016). https://doi.org/10.1002/ep.12257
  3. Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J. and Eckert, C. A., "The Path Forward for Biofuels and Biomaterials," Science, 311, 484-489(2006). https://doi.org/10.1126/science.1114736
  4. Cho, S. K. and Ju, M. Y., "Ethanol development and food security: Brazil and the U.S.A.," Iberoamerica, 14(2), 147-192(2012).
  5. Laurichesse, S. and Averous, L., "Chemical modification of lignins: towards biobased polymers," Prog. Polym. Sci., 39(7), 1266-1290(2013). https://doi.org/10.1016/j.progpolymsci.2013.11.004
  6. Ministry of Environment, "Status of waste genertion and disposal in Korea," Ministry of Environment, 21-517(2016).
  7. Ministry of Environment, "Notification No. 2016-32 of the Ministry of Envirionment, Classfication and recycling standards of wastewood," Korea Ministry of Government Legislation, 1-3(2016).
  8. Younsei University UIF, "Study on emission characteristics of air pollutants for energy recovery of wastewood," Nat. Inst. Environ. Res., 19, 89(2008).
  9. Younsei University UIF, "Study on emission characteristics of air pollutants for energy recovery of wastewood," National Institute of Environmental Research, 52-106(2008).
  10. USEPA, "Review Of New Source Performance Standards For Kraft Pulp Mills," U. S. Environmental Protection Agency(1983).
  11. Sarkanen, K. V. and Ludwig, C. H., "Lignins: occurrence, formation, structure, and reactions" Wiley-Interscience, 597-637(1971).
  12. Blanch, H. W., Simmons, B. A. and Klein-Marcuschamer D., "Biomass deconstruction to sugars," Biotechnol. J., 6(9), 1086-1102(2011). https://doi.org/10.1002/biot.201000180
  13. Bhutto, A. W., Qureshi, K., Harijan, K. and Abro, R., "Insight into progress in pre-treatment of lignocellulosic biomass," Energy, 122, 724-745(2017). https://doi.org/10.1016/j.energy.2017.01.005
  14. Hu, G., Heimann, J. and Rojas O. J., "Feedstock pretreatment strategies for producing ethanol from wood, bark, and forest residues," BioResour., 3(1), 270-294(2008)
  15. Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., Ehara, K., Xie, D., Lam, D. and Saddler, J., "Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields," Biotechnol. Bioeng.. 94(5), 851-861(2006). https://doi.org/10.1002/bit.20905
  16. Pan, X., Xie, D., Yu, R. W., Lam, D. and Saddler, J. N., "Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: fractionation and process optimization," Ind. Eng. Chem. Res., 46(8), 2609-2617(2007). https://doi.org/10.1021/ie061576l
  17. Goh, C. S., Tan H. T., Lee, K. T. and Brosse, N., "Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology," Biomass and Bioenergy, 35(9), 4025-4033(2011). https://doi.org/10.1016/j.biombioe.2011.06.034
  18. Brahim, M., Boussetta, N., Grimi, N., Vorobiev, E., Zieger-Devin, I. and Brosse, N., "Pretreatment optimization from rapeseed straw and lignin characterization," Ind. Crops. Prod., 95, 643-650(2017). https://doi.org/10.1016/j.indcrop.2016.11.033
  19. Kim, Y., Yu, A., Chung, B., Han, M. and Choi, G., "Lignin removal from barley straw by ethanosolv pretreatment," KSBB J., 24(6), 527-532(2009).
  20. Kumar, P., Barrett, D. M., Delwiche, M. J. and Stroeve P., "Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production," Ind. Eng. Chem. Res., 48(8), 3713-3729(2009). https://doi.org/10.1021/ie801542g
  21. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D., "Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples: Laboratory Analytical Procedure (LAP)," National Renewable Energy Laboratory(2008).
  22. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D., "Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP)," National Renewable Energy Laboratory(2012).
  23. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D., "Determination of Structural Carbohydrates and Lignin in Biomass.: Laboratory analytical procedure (LAP)," National Renewable Energy Laboratory(2012).
  24. TAPPI, "Acid-insoluble lignin in wood and pulp," Technical Association of the Pulp and Paper Industry(2002).
  25. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D., "Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP)," National Renewable Energy Laboratory(2008).
  26. Zheng, Y., Pan, Z., Zhang, R., Labavitch, J. M., Wang, D., Teter, S. A. and Jenkins, B. M., "Evaluation of different biomass materials as feedstock for fermentable sugar production," Appl. Biochem. Biotechnol., 136-140, 423-435(2007).