• Title/Summary/Keyword: Yield curve

Search Result 420, Processing Time 0.028 seconds

Simple P-I diagram for structural components based on support rotation angle criteria

  • Kee, Jung Hun;Park, Jong Yil
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.509-514
    • /
    • 2020
  • In the preliminary design phase of explosion-proof structures, the use of P-I diagram is useful. Based on the fact that the deformation criteria at failure or heavy damage is significantly larger than the yield deformation, a closed form solution of normalized P-I diagram is proposed using the complete plastic resistance curve. When actual sizes and material properties of RC structural component are considered, the complete plasticity assumption shows only a maximum error of 6% in terms of strain energy, and a maximum difference of 9% of the amount of explosives in CWSD. Thru comparison with four field test results, the same damage pattern was predicted in all four specimens.

The influence of nonlinear damping on the response of a piezoelectric cantilever sensor in a symmetric or asymmetric configuration

  • Habib, Giuseppe;Fainshtein, Emanuel;Wolf, Kai-Dietrich;Gottlieb, Oded
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.239-243
    • /
    • 2022
  • We investigate the influence of nonlinear viscoelastic damping on the response of a cantilever sensor covered by piezoelectric layers in a symmetric or asymmetric configuration. We formulate an initial-boundary-value problem which consistently incorporates both geometric and material nonlinearities including the effect of viscoelastic damping which cannot be ignored for micro- and nano-mechanical sensor operation in a vacuum environment. We employ an asymptotic multiple-scales methodology to yield the system nonlinear frequency response near its primary resonance and employ a model-based estimation procedure to deduce the system damping backone curve from controlled experiments in vacuum. We discuss the effect of nonlinear damping on sensor applications for scanning probe microscopy.

Estimation of the Korean Yield Curve via Bayesian Variable Selection (베이지안 변수선택을 이용한 한국 수익률곡선 추정)

  • Koo, Byungsoo
    • Economic Analysis
    • /
    • v.26 no.1
    • /
    • pp.84-132
    • /
    • 2020
  • A central bank infers market expectations of future yields based on yield curves. The central bank needs to precisely understand the changes in market expectations of future yields in order to have a more effective monetary policy. This need explains why a range of models have attempted to produce yield curves and market expectations that are as accurate as possible. Alongside the development of bond markets, the interconnectedness between them and macroeconomic factors has deepened, and this has rendered understanding of what macroeconomic variables affect yield curves even more important. However, the existence of various theories about determinants of yields inevitably means that previous studies have applied different macroeconomics variables when estimating yield curves. This indicates model uncertainties and naturally poses a question: Which model better estimates yield curves? Put differently, which variables should be applied to better estimate yield curves? This study employs the Dynamic Nelson-Siegel Model and takes the Bayesian approach to variable selection in order to ensure precision in estimating yield curves and market expectations of future yields. Bayesian variable selection may be an effective estimation method because it is expected to alleviate problems arising from a priori selection of the key variables comprising a model, and because it is a comprehensive approach that efficiently reflects model uncertainties in estimations. A comparison of Bayesian variable selection with the models of previous studies finds that the question of which macroeconomic variables are applied to a model has considerable impact on market expectations of future yields. This shows that model uncertainties exert great influence on the resultant estimates, and that it is reasonable to reflect model uncertainties in the estimation. Those implications are underscored by the superior forecasting performance of Bayesian variable selection models over those models used in previous studies. Therefore, the use of a Bayesian variable selection model is advisable in estimating yield curves and market expectations of yield curves with greater exactitude in consideration of the impact of model uncertainties on the estimation.

A Method of Rating Curve Adjustment (수위유량곡선보정방법에 대하여)

  • 박정근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.2
    • /
    • pp.4116-4120
    • /
    • 1976
  • With the use of many rivers increased nearly to the capacity, the need for information concerning daily quantities of water and the total annual or seasonal runoff has became increased. A systematic record of the flow of a river is commonly made in terms of the mean daily discharge Since. a single observation of stage is converted into discharge by means of rating curve, it is essential that the stage discharge relations shall be accurately established. All rating curves have the looping effect due chiefly to channel storage and variation in surface slope. Loop rating curves are most characteristic on streams with somewhat flatter gradients and more constricted channels. The great majority of gauge readings are taken by unskilled observers once a day without any indication of whether the stage is rising or falling. Therefore, normal rating curves shall show one discharge for one gauge height, regardless of falling or rising stage. The above reasons call for the correction of the discharge measurements taken on either side of flood waves to the theoretical steady-state condition. The correction of the discharge measurement is to consider channel storage and variation in surface slope. (1) Channel storage As the surface elevation of a river rises, water is temporarily stored in the river channel. There fore, the actual discharge at the control section can be attained by substracting the rate of change of storage from the measured discharge. (2) Variation in surface slope From the Manning equation, the steady state discharge Q in a channel of given roughness and cross-section, is given as {{{{Q PROPTO SQRT { 1} }}}} When the slope is not equal, the actual discharge will be {{{{ { Q}_{r CDOT f } PROPTO SQRT { 1 +- TRIANGLE I} CDOT TRIANGLE I }}}} may be expressed in the form of {{{{ TRIANGLE I= { dh/dt} over {c } }}}} and the celerity is approximately equal to 1.3 times the mean watrr velocity. Therefore, The steady-state discharge can be estimated from the following equation. {{{{Q= { { Q}_{r CDOT f } } over { SQRT { (1 +- { A CDOT dh/dt} over {1.3 { Q}_{r CDOT f }I } )} } }}}} If a sufficient number of observations are available, an alternative procedure can be applied. A rating curve may be drawn as a median line through the uncorrected values. The values of {{{{ { 1} over {cI } }}}} can be yielded from the measured quantities of Qr$.$f and dh/dt by use of Eq. (7) and (8). From the 1/cI v. stage relationship, new vlues of 1/cI are obtained and inserted in Eq. (7) and (8) to yield the steady-state discharge Q. The new values of Q are then plotted against stage as the corrected steadystate curve.

  • PDF

Secondary electron emission characteristics of a thermally grown $SiO_2$ thin layer (건식 열산화로 성장시킨 $SiO_2$박막의 이차전자 방출 특성)

  • 정태원;유세기;이정희;진성환;허정나;이휘건;전동렬;김종민
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • The secondary election emission (SEE) yields for the thermally grown $SiO_2$ thin layers were measured by varying the thickness of the $SiO_2$ layer and the primary current. $SiO_2$ thin layers were thermally grown in a furnace at $930^{\circ}C$, whose thickness varied to be 5.8 nm, 19 nm, 43 nm, 79 nm, 95 nm, and 114 nm. When the $SiO_2$ layers were thinner than 43 nm, it was found that SEE curves followed the universal curve. However, for samples with a $SiO_2$ layer thicker than 79 nm, the SEE curves exhibited two maxima and the values of SEE yields were reduced. Additionally, as the current of primary electrons increased, the SEE yields were reduced. In this experiment, the maximum value of the SEE yield for $SiO_2$ layers was obtained to be 3.35 when the thickness of $SiO_2$ layer was 19 nm, with the primary electron energy 300 eV and the primary electron current 0.97 $\mu\textrm{A}$. The penetration and escape depth of an electron in the $SiO_2$ layers were calculated at the primary electron energy for the maximum value of the SEE yield and from these depths, it was calculated that the thickness of the $SiO_2$layer.

  • PDF

Estimation of Hydraulic Parameters from Slug, Single Well Pumping and Step-drawdown Tests (순간수위 변화시험, 단공양수시험 및 단계양수시험을 통한 수리상수 추정연구)

  • Jo, Yun-Ju;Lee, Jin-Yong;Jun, Seong-Chun;Cheon, Jeong-Yong;Kwon, Hyung-Pyo
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.203-212
    • /
    • 2010
  • The aim in this study is used to develop the remediation technologies for contaminated ground water. Slug, single well pumping and step-drawdown tests have been used to obtain hydraulic parameter estimates in the field. Slug tests yield hydraulic conductivity values using the Bouwer and Rice and C-B-P analysis methods. The mean and median hydraulic conductivity values of Bouwer and Rice method are $4.48{\times}10^{-3}$ and $1.16{\times}10^{-3}cm/sec$, respectively. On the other hand, C-B-P method gave mean and median hydraulic conductivity values of $2.37{\times}10^{-3}$ and $7.09{\times}10^{-4}cm/sec$, respectively. These analyses show a trend for the Bouwer and Rice method to yield lower hydraulic conductivity values in low permeability zones of granite in the study area. Sing well pumping test data were calculated through type curve in GW7, GW12 and MW9 wells. It could be interpreted that the differences of hydraulic conductivity and transmissivity values between GW7 and GW12, MW9 is related with fault clays and fractures in the bedrock among the wells. Step-drawdown tests were carried out in the KDPW1 and KDPW2 wells. The hydraulic parameter of KDPW1 and KDPW2 showed very litter difference between the values. The study of hydraulic parameter estimates can be used to purify in contaminated groundwater.

Effect of Fly Ash on Rheology and Strength of Recycled Aggregate Concrete (순환골재와 플라이애쉬가 콘크리트 유동성 및 강도에 미치는 영향)

  • Kim, Kyu-Hun;Shin, Myoung-Su;Kong, Young-Sik;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.241-250
    • /
    • 2013
  • As the amount of construction wastes increase, reuse of demolished concrete is being considered in research areas. Reflecting these interests, this experiment was performed to clarify concrete's mechanical property and workability using recycled aggregate as a coarse aggregate. Eleven cases of concrete specimens were produced by changing the rates of replacement of coarse recycled aggregate, replacement of fly ash, design strength, and moisture state of coarse aggregate. Compressive and tensile split strength tests were taken to study the mechanical properties of hardened concrete. To verify flowability of fresh concrete, a slump test and a flow curve test using ICAR Rheometer were performed. It was found that using recycled aggregate and fly ash leads good workability by testing slump and flow curve. The yield stress of fresh concrete decreased with increase of recycled aggregate substitution rate. Through the test, it was confirmed that there is inversely proportional relationship between the slump and yield stress roughly. Recycled aggregate concrete containing fly ash has considerably lower plasticity viscosity than not containing fly ash. Strength test results showed that recycled aggregate tended to decrease compressive and tensile strength of concrete, when recycled aggregate was used as a coarse aggregate. Using over 30% recycled aggregate caused significant decreases in compressive and tensile strength. Replacing 30% cement with fly ash was helpful to improve the long-term strength of concrete.

Evaluation on the Bending Behavior After Yield of RC Beam by Using Image Processing Method(I): Focused on the Compressive Part (영상 분석 기법을 이용한 RC 부재의 항복 후 휨 거동 분석(I): 압축부를 중심으로)

  • Kim, Kun-Soo;Park, Ki-Tae;Woo, Tae-Ryeon;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.39-46
    • /
    • 2022
  • As the limit state design method is applied as the design method of reinforced concrete structure, the ultimate state is considered when analyses or designing. In fact, when the reinforced concrete member is bent, there is a confining effect by stirrup, but the material curve of unconfined concretes applied when designing. In this study, to evaluate the suitability of the confined concrete model for flexural members, a 4-point bending test was conducted on RC simple beam with a double-reinforced rectangular cross-section, and the behavior of the member after yield was analyzed in detail using image processing method. For detailed analysis, the DIC method was adopted as an image analysis method, and the validity of DIC method was verified by comparing the measurement results with the LVDT. The distribution of the strain on the concrete surface calculated as a result of the DIC method could be obtained, and the average strain distribution of the cross-section was calculated. Using the average strain distribution, the stress distribution applied existing confined concrete model as a material curve could be derived. Through the comparison of the experimental results and the existing model application results, the suitability of the confined concrete model for RC flexural members having a rectangular cross-section was evaluated.

The Production Objectives and Optimal Standard of Density Control Using Stand Density Management Diagram for Pinus densiflora Forests in Korea (임분밀도관리도를 이용한 소나무림의 적정 임분밀도 관리 기준 및 수확목표)

  • Park, Joon-hyung;Jung, Su-Young;Yoo, Byung-oh;Lee, Kwang-Soo;Park, Yong-bae;Kim, Hyung-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.457-464
    • /
    • 2017
  • This study has utilized the stand density management diagram to devise an efficient management standard for the stand density for Pinus densiflora that secures the health of the stands and predicted the harvest goals. The appropriate stand control level was estimated by modeling the relationship of the relative yield index (Ry) to the ratio of slender trees within the stand through an exponential function; the coefficient of determination ($R^2$) was found to be 0.424 according to the estimation. The ratio of slender trees within the stand showed a tendency of rapid increase at a certain relative yield index; with this relational function, the appropriate Ry value of 0.84 was obtained. By estimating the curve of the Ry value 0.84, which was the appropriate stand density management level, as well as the height of dominant trees in the central region of Korea, the production objective for each site index was set. Assuming that the final age by the site indices ranged from 10 to 16 for the P. densiflora in central region of Korea, the number of production was estimated to be between 426 to 1,311 trees per ha. It was predicted that the production of medium-diameter logs larger than 30 cm in diameter is possible for the target DBH at a site index of more than 16; small-diameter logs larger than 20 cm in diameter for site indices 12 and 14 enabled, and small-diameter logs of less than 20 cm for site index 10.

Genotypic Variation of Rapid Canopy Closure and Its Relationship with Yield of Rice (벼 조기초관폐쇄성의 품종 변이 및 수량과의 관계)

  • Fu, Jin-Dong;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • Rapid canopy closure (RCC) is one of the physiological attributes that may enhance genetic yield potential of rice (Oryza sativa L.) in a growing season. Crop growth before canopy closure could be described by an exponential equation of $y\;=\;{\alpha}{\cdot}{\exp}({\beta}{\cdot}t)$ where $\alpha$ is the crop leaf area index (LAI) or shoot dry weight (DW), t is the thermal time, $\beta$ is the LAI or DW at the beginning of the exponential growth and is the relative growth rate of LAI ($m^2m^{-2}^{\circ}C^{-1}$) or DW($gg^{-2}^{\circ}C^{-1}$). Field experiment using 22 cultivars revealed that the exponential growth phase before canopy closure can be divided into two sections; an earlier section during which crop dry weight and LAI of varieties are highly dependent on $\alpha$ and a second section where crop dry weight and LAI are highly dependent on $\beta$. Grain weight had significantly positive correlation with $\alpha$ parameter and dry weight and LAI during early exponential phase. The parameter $\beta$ of the exponential growth curve had positive and significant correlation with the LAI and dry weight during the late exponential growth phase, grain number per unit area, and grain yield. There was genotypic difference for RCC parameters, $\alpha$ and $\beta$, indicating the possibility of genetic improvement for these traits.