• Title/Summary/Keyword: Yield Shear Force

Search Result 162, Processing Time 0.025 seconds

Effects of Pork Liver Levels on The Quality Characteristics on Hamburger Patties (돈간 첨가량이 햄버거 패티의 품질특성에 미치는 영향)

  • Choi, Yun-Sang;Ku, Su-Kyung;Lee, Hae-Jin;Park, Jong-Dae;Sung, Jung-Min;Jeon, Ki-Hong;Oh, Nam-Su;Kim, Young-Boong
    • Korean journal of food and cookery science
    • /
    • v.33 no.1
    • /
    • pp.20-27
    • /
    • 2017
  • Purpose: The objective of this study was to examine the effects of pork liver levels on the quality characteristics of hamburger patties. Methods: The effects of the addition of livers concentrations from 0% to 20% were investigated based on chemical composition, cooking characteristics, physicochemical properties, shear force, and sensory characteristics of hamburger patties. Results: The increasing pork liver levels from 0% to 20% resulted in increased moisture content, ash content, redness, reduction in diameter, and reduction in thickness of hamburger patties, but decreased the fat content, lightness, cooking yield, shear force and water holding capacity of hamburger patties. The protein content of hamburger patties with different amounts of pork liver showed no significant differences. The hamburger patties with increasing pork liver levels had lower color, flavor, juiciness, and overall acceptability scores, but the overall acceptability of control showed similar trends to T1 (treatments with 5% pork liver). Conclusion: Pork liver in the formulation showed similar quality characteristics as compared to control hamburger patties without liver, with best results obtained on adding up to 5% pork liver.

FEM Analysis of RC Deep Beam Depending on Shear-Span Ratio

  • Lee, Yongtaeg;Kim, Seongeun;Kim, Seunghun
    • Architectural research
    • /
    • v.19 no.4
    • /
    • pp.117-124
    • /
    • 2017
  • In this research, we carried out finite element analysis depends on the variations such as the strength of the main bar, concrete, shear-span ratio(a/d) and existence of shear reinforcing bar. Throughout the results of FEM analysis, we were able to figure out how each variation can effect on shear performance. As the strength of concrete increased, the maximum shear force enhancement effect of each specimen was evaluated. As a result, the shear strengthening effect was 51~97% for shear reinforced specimens, and 26~44% for non-shear reinforced specimens. As the yield strength of reinforcing bars increases, the shear reinforcement effect of the specimen the specimens without shear reinforcement were 3%~6% higher than those with shear reinforcement. Theoretical and analytical values were compared using the design equations obtained from the CEB code. Theoretical and analytical values were compared using the design equations obtained from the CEB code. As a result, the error rate was the highest at 3.64 in the S1.0-C0 series and the lowest at 1.46 in the S1.7-C1 series. Therefore, the design equation of the CEB code is estimated to underestimate the actual shear strength of deep beams that are not subjected to shear reinforcement.

Finite element analysis for the seismic performance of steel frame-tube structures with replaceable shear links

  • Lian, Ming;Zhang, Hao;Cheng, Qianqian;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.365-382
    • /
    • 2019
  • In steel frame-tube structures (SFTSs) the application of flexural beam is not suitable for the beam with span-to-depth ratio lower than five because the plastic hinges at beam-ends can not be developed properly. This can lead to lower ductility and energy dissipation capacity of the SFTS. To address this problem, a replaceable shear link, acting as a ductile fuse at the mid length of deep beams, is proposed. SFTS with replaceable shear links (SFTS-RSLs) dissipate seismic energy through shear deformation of the link. In order to evaluate this proposal, buildings were designed to compare the seismic performance of SFTS-RSLs and SFTSs. Several sub-structures were selected from the design buildings and finite element models (FEMs) were established to study their hysteretic behavior. Static pushover and dynamic analyses were undertaken in comparing seismic performance of the FEMs for each building. The results indicated that the SFTS-RSL and SFTS had similar initial lateral stiffness. Compared with SFTS, SFTS-RSL had lower yield strength and maximum strength, but higher ductility and energy dissipation capacity. During earthquakes, SFTS-RSL had lower interstory drift, maximum base shear force and story shear force compared with the SFTS. Placing a shear link at the beam mid-span did not increase shear lag effects for the structure. The SFTS-RSL concentrates plasticity on the shear link. Other structural components remain elastic during seismic loading. It is expected that the SFTS-RSL will be a reliable dual resistant system. It offers the benefit of being able to repair the structure by replacing damaged shear links after earthquakes.

Damping Performance Analysis of Electro-Rheological Squeeze Film Damper Sealed with Slotted Rings (슬롯 링을 장착한 전기유변 스퀴즈 필름 댐퍼의 감쇠성능 해석)

  • 정시영;김창호;이용복
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.75-83
    • /
    • 2000
  • The present paper proposes a new type of an electro-rheological squeeze film damper (ER SFD) of which the damping capacity can be controlled by the application of electric field. The new ER .SFD- is sealed with slotted rings having electrodes at the inside of the constant gap. The ER SFD can provent the problem of electric short which might be occurred in a previous ER SFD. Reynolds lubrication equation for a Newtonian fluid and the end leakage equation for ER fluids are numerically solved to get the pressure distributions and the damping coefficients of the ER SFD. The results show that the damping coefficients greatly increase with increasing the yield shear stress of ER fluid. In addition, the unbalance response analysis of a flexible rotor supported on the new ER SFD implies that the rotor system can be operated with the minimum of rotor amplitude and force transmissibility by controlling the yield shear stress of ER fluids properly.

Effects of Sous-vide Cooking Temperature on Triceps Brachii of Black Goats

  • Kyu-Min Kang;Hack-Youn Kim
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.861-872
    • /
    • 2024
  • The aim of this study was to determine the effects of sous-vide cooking temperature on the triceps brachii of black goats. Triceps brachii of black goats (12 months) were sous-vide cooked at 55℃, 60℃, and 65℃. The samples were examined for color, scanning electron microscope photographs, sarcomere length, fiber cross-sectional area, cooking yield, shear force, sensory evaluation, and aromatic profile. The results showed that CIE a*, CIE b*, and chroma increased with increasing sous-vide cooking temperature. However, the cooking yield significantly decreased with increasing sous-vide cooking temperature, and the shear forces of the 60℃ and 65℃ samples showed no significant differences. For sensory evaluation, the 60℃ sample showed the highest scores for flavor, texture, and off-flavor. Furthermore, the 60℃ sample showed the significantly lowest value of octadienone (aroma characteristics of metallic) intensity (p<0.05). Therefore, sous-vide cooking of triceps brachii of black goats at 60℃ is effective in reducing off-flavor and improving tenderness.

Seismic Responses of Seismically Isolated Nuclear Power Plant Structure Considering Post-Yield Stiffness of EQS Bearing (EQS 면진장치의 항복 후 강성을 고려한 면진 원전구조물의 지진응답)

  • Kim, Byeong-Su;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.319-329
    • /
    • 2016
  • The Eradi Quake System (EQS) is a seismic isolation bearing system designed to minimize forces and displacements experienced by structures subjected to ground motion. The EQS dissipates seismic energy through friction of Poly Tetra Fluoro Ethylene (PTFE) disk pad. In general, a force-displacement relationship of EQS has post yield stiffness hardening during large inelastic displacement. In this study, seismic responses of seismically isolated nuclear power plant (NPP) subjected to design basis earthquake (DBE) and beyond design basis earthquakes (150% DBE and 167% DBE) are compared considering the post yield stiffness hardening effect of EQS. From the results, it can be observed that if the post-yield stiffness hardening effect of EQS is increased, the displacement response of EQS is reduced, and the acceleration and shear responses of containment structures of NPP is increased.

Structural Performance of One-way Void Plywood Slab System with form work Pane (거푸집 패널이 부착된 1방향 중공슬래브의 구조 성능)

  • Hur, Moo-Won;Chae, Kyoung-Hun;Hwang, Kyu-Seok;Yoon, Sung-Ho;Park, Tae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.7-15
    • /
    • 2021
  • In this study, we developed Void Plywood Slab (VPS) that improved the shape of existing hollow materials. Its performance was evaluated through one-way flexural and one-way shear tests using the developed VPS. As a result of the one-way flexural performance tests of VPS, the yield load value for FPS series(longitudinal direction specimens with hollow materials) was approximately 97.5% compared to FPS-00(without hollow materials) specimen. The tests showed that the yield load was not much different. In addition, FNS series(transverse direction specimens with hollow materials) also represented about 97% of FPS-00 specimen. The one-way flexural performance was shown to have little impact from void materials. Therefore, it is confirmed that the presented system is applicable to the VPS to the slab design. The results of the one-way shear performance tests of VPS showed that it was about 92% compared to the SS-00(without hollow materials) specimen. These results were somewhat insufficient for the SS-00 specimen. Shear strength equation is expressed as the sum of shear force by concrete and shear force by reinforcement. However, in the case of void slab, it is believed that the concrete section has been deleted by the void material. However, the strength of the structure applied to the shear design, as with the flexural design, is also applied to the design based on the yield load value.

A co-rotational 8-node assumed strain element for large displacement elasto-plastic analysis of plates and shells

  • Kim, K.D.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.199-223
    • /
    • 2003
  • The formulation of a non-linear shear deformable shell element is presented for the solution of stability problems of stiffened plates and shells. The formulation of the geometrical stiffness presented here is exactly defined on the midsurface and is efficient for analyzing stability problems of thick plates and shells by incorporating bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. The element is free of both membrane and shear locking behaviour by using the assumed strain method such that the element performs very well in the thin shells. By using six degrees of freedom per node, the present element can model stiffened plate and shell structures. The formulation includes large displacement effects and elasto-plastic material behaviour. The material is assumed to be isotropic and elasto-plastic obeying Von Mises's yield condition and its associated flow rules. The results showed good agreement with references and computational efficiency.

Dissolution Monitoring of Geo-Soluble Mixtures (지반 소실 혼합재의 용해과정 모니터링)

  • Truong, Q. Hung;Byun, Yong-Hoon;Eom, Yong-Hun;Sim, Young-Jong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.111-122
    • /
    • 2009
  • Dissolution of some of geo-materials may yield the loss of the soil strength and the settlement of earth structures. The goal of this study is to monitor the several physical behaviors of soluble mixtures during dissolution. Sand-salt mixtures are used to monitor the meso to macro response including the settlements and shear waves. The mixtures of photoelastic and ice disks are used to monitor micro to meso behavior of soluble mixture including the void ratio, force chain, coordination number and horizontal force changes. In the sand-salt mixtures, shear waves are measured by using bender elements in conventional oedometer cells. In the photoelastic disk - ice disk mixtures, micro to meso response are measured by digital images and load cells. The shear wave velocity decreases at the initial stage of the dissolution, and then increases and approaches to asymptotic value. The larger dissoluble particle and the more random packing produces the severe horizontal fore change. After dissolution, the void increases and the coordination number decreases. This study demonstrates that the particle level behavior such as the changes of the force chain, void ratio, and coordination number affects the global behavior such as the change of the shear wave velocity and horizontal force of the system.

Cutting Force by Chip Former in Machining (절삭가공에서 칩포머에 의한 절삭저항)

  • Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.325-330
    • /
    • 2004
  • The forces acting on the tool are an important aspect of maching. For those concerned with the manufacture of machine tools, a knowledge of the forces in needed for estimation of power reguirements and for the design of machine tool elements tool-holders and fixtures, adequately rigid and free from vibration. The force reguired to form the chip is dependent on the shear yield strength of the work material un der cutting conditions which are cutting speed, workpiece, feedrate, insert type. In this study, FG, ML, MP, MC, C, RT inserts were investigated in turning using SM45C, SCM4, SKD11, SUS316, materials. The diameter of materials was 60mm, 80mm, 110mm. This paper presents MP were lowest and SKD11 were largest of the workpiece in cutting forces.

  • PDF