Browse > Article
http://dx.doi.org/10.7843/kgs.2009.25.10.111

Dissolution Monitoring of Geo-Soluble Mixtures  

Truong, Q. Hung (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
Byun, Yong-Hoon (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
Eom, Yong-Hun (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
Sim, Young-Jong (Land, Housing & Urban Research Institute, Korea Land & Housing Corporation)
Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
Publication Information
Journal of the Korean Geotechnical Society / v.25, no.10, 2009 , pp. 111-122 More about this Journal
Abstract
Dissolution of some of geo-materials may yield the loss of the soil strength and the settlement of earth structures. The goal of this study is to monitor the several physical behaviors of soluble mixtures during dissolution. Sand-salt mixtures are used to monitor the meso to macro response including the settlements and shear waves. The mixtures of photoelastic and ice disks are used to monitor micro to meso behavior of soluble mixture including the void ratio, force chain, coordination number and horizontal force changes. In the sand-salt mixtures, shear waves are measured by using bender elements in conventional oedometer cells. In the photoelastic disk - ice disk mixtures, micro to meso response are measured by digital images and load cells. The shear wave velocity decreases at the initial stage of the dissolution, and then increases and approaches to asymptotic value. The larger dissoluble particle and the more random packing produces the severe horizontal fore change. After dissolution, the void increases and the coordination number decreases. This study demonstrates that the particle level behavior such as the changes of the force chain, void ratio, and coordination number affects the global behavior such as the change of the shear wave velocity and horizontal force of the system.
Keywords
Coordination number; Dissolution; Force chain; Photoelastic; Shear waves; Void ratio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Muthuswamy, M., Peters, J., and Tordesillas, A. (2006), Uncovering the secrets to relieving stress: discrete element analysis of force chains in particulate media, Anziam J., 47, C355-C372   DOI
2 Truong, Q. H., Eom, Y. H., and Lee, J. S. (2009), Stiffness characteristics of soluble mixtures, Geotechnique (accepted)
3 Azam, S. (2000), Collapse and compressibility behaviour of arid calcareous soil formations, Bull. Eng. Geol. Env., 59(3), 211-217, doi: 10.1007/s100640000060   DOI   ScienceOn
4 Ramesh, K. (2008), Photoelasticity, in Springer Handbook of Experimental Solid Mechanics edited by W.N. Sharpe, pp. 701-742, Springer, New York
5 Fam, M. A., Cascante, G., and Dusseault, M. B. (2002), Large and small strain properties of sands subjected to local void increase, J. Geotech. Geoenviron., 128(12), 1018-1025, doi:10.1061/(ASCE)1090- 0241(2002)128:12(1018)   DOI   ScienceOn
6 Budynas, R. (1998), Advanced Strength and Applied Stress Analysis, 2nd ed., 960 pp., McGraw-Hill Science/Engineering/Math, New York
7 Jessop, H. T. and Harris, F. C. (1949), Photoelasticity: Principles and Methods, Cleaver-Hume Press Ltd., New York
8 Hardin, B. O., and Drnevich, V. P. (1972), Shear modulus and damping in soils: measurements and parameter effects, Journal of the Soil Mechanics and Foundation Division, 98(6), 603–624
9 Geng, J., Howell, D., Longhi, E., Behringer, R. P., Reydellet, G., Vanel, L., Clément, E., and Luding, S. (2001), Footprints in sand: the response of a granular material to local perturbations, Phys. Rev. Lett., 87(3), 035506-1~035506-4, doi:10.1103/PhysRevLett.87.035506   DOI   ScienceOn
10 Rastogi, P. K. (Eds.) (1999), Photomechanics, Springer - Verlag, Berlin. 471 pp
11 Santamarina, J. C., Klein, K. A., and Fam, M. A. (2001), Soils and Waves – Particulate Materials Behavior, Characterization and Process Monitoring, 508 pp., Wiley, New York
12 Bell, F. G. (2007), Engineering Geology, 2nd ed., 592 pp., Elsevier, Great Britain
13 Drescher, A. and de Josselin de Jong, G. (1972), Photoelastic verification of a mechanical model for the flow of a granular material, J. Mech. Phys. Solid., 20, 337-351, doi:10.1016/0022- 5096(72)90029-4   DOI   ScienceOn
14 Hillel, D. (Eds.) (2004), Encyclopedia of Soils in the Environment, Vol. 1, Academic Press, New York
15 Blyth, F. G. H. and de Freitas, M. H. (1984), A Geology for Engineers, 336 pp., Butterworth-Heinemann, Oxford
16 Craft, D. (2005), Seepage chemistry manual, report, 76pp., Bureau of Reclamation, U.S. Department of the Interior - Bureau of Reclamation, Denver, Colorado
17 Allersma, H. G. B. (1982), Determination of the stress distribution in assemblies of photoelastic particles, Exp. Mech., 9, 336-341
18 Majmudar, T. S. and Behringer, R. P. (2005), Contact force measurements and stress-induced anisotropy in granular materials, Nature, 435, 1079-1082, doi:10.1038/nature03805   DOI   PUBMED   ScienceOn
19 Peters, J. E., Muthuswamy, M., Wibowo, J., and Tordesillas, A. 2005. Characterization of force chains in granular material. Physical Review Letters: 72: 1539-3755
20 Craft, D., Cain, C. and Sullivan, C. (2006), Seepage geochemistry and mineral dissolution at Clark Canyon Dam, Pick-Sloan Missouri Basin Project, East Bench Unit, Montana, report, 48 pp., U.S. Department of the Interior - Bureau of Reclamation, Denver, Colorado.
21 Lee, J. S. and Santamarina, J. C. (2005), Bender elements: performance and signal interpretation, J. Geotech. Geoenviron., 131(9), 1063-1070, doi:10.1061/(ASCE)1090-0241(2005)131:9(1063)   DOI   ScienceOn
22 Wan, R., Guo, P., and Al-Mamun, M. (2005), Behaviour of granular materials in relation to their fabric dependencies, Soils Found., 45(2), 77-86   DOI