• Title/Summary/Keyword: Yield Prediction

Search Result 549, Processing Time 0.028 seconds

Purification of Streptomyces Phospholipase D by Immunoaffinity Chromatoghraphy using Peptide Antibodies (Streptomyces phospholipase D의 정제를 위한 면역친화 크로마토그래피의 개발)

  • Park, In-Sun;Kim, Young-Ah;Jeong, Su-Jin;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.294-298
    • /
    • 2006
  • An immunoaffinity chromatography for the specific binding of Streptomyces somaliensis phospholipase D (PLD) that is considered as an industrially potential enzyme was developed. By using the protein structure prediction programs and the X-ray crystal structure of a Streptomyces PLD, 5 different epitopes with high antigenicity that are predicted to locate on the surface of the S. somaliensis PLD were selected and then synthesized for the preparation of antipeptide antibodies. Each purified rabbit IgG was coupled with NHS-activated Sepharose to prepare the immunoaffinity resins. After one-step purification of the culture concentrate on the antipeptide IgG-coupled Sepharose column, SDS-PAGE and the Western blot analysis of the purified samples showed that purification of PLD on the affinity columns was satisfactory, indicating that the peptide design using the structural information of Streptomyces PLDs was rational. However, the purified PLD in the solution aggregated rapidly, which resulted in poor specific activity and low purification yield.

Analysis of Pumping Test Data and The Prediction of Drawdown for Daejong-Chun Area (대종천유역 충적대수층의 수리성 분석 및 수위강하예측에 관한 연구)

  • Choi, Jae-Jin;Sung, Won-Mo;Hahn, Jeong-Sang
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.541-549
    • /
    • 1993
  • The main goal of this paper is to determine hydraulic properties and to predict drawdown for the efficient and stable development of groundwater in the Daejong-Chun area, North of Kyungsang-Do. Based on geological survey and analysis of well logging data conducted in 1991, it is found that the type of aquifer of this area is considered to be an anisotropic unconfined aquifer with saturated thickness of 19.8 m. In order to characterize this aquifer pumping test was conducted, and the resulting drawdown data were utilized for the analysis by applying both type curve matching technique and semi-log straight line method. As a result, the average specific yield of this aquifer is estimated as 32.3%, and the average ratio of $K_H$ to $K_V$ is only 2.7, which means that gravitational effect is not significant factor for this type of aquifer. For the validation of the estimated hydraulic properties, the analytical model which was developed with Newton-Raphson iteration procedure in this study, was employed to generate the drawdown. And, the resulting drawdown was compared against actual drawdown data and it shows the excellent matches. The actual drawdown data for 9 hours of pumping were used for history matching purposes and relatively satisfactory matches were achieved in this match. Then, the model was run by using the tuned parameters that are obtained during history matching stage, and the drawdown was predicted for the next 30 years of pumping with $3,000m^3/day$ of constant pumping rate. Its result indicates that the drawdown was stabilized as 1.41 m from 20 days with $3,000m^3/day$ of constant pumping rate, which is the required amount of water to be safely supplied to this area.

  • PDF

Self-consolidating concrete filled steel tube columns - Design equations for confinement and axial strength

  • Lachemi, M.;Hossain, K.M.A.;Lambros, V.B.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.541-562
    • /
    • 2006
  • This paper compares the performance of axially loaded concrete filled steel tube (CFST) columns cast using a conventionally vibrated normal concrete (NC) and a novel self-consolidating concrete (SCC) made with a new viscosity modifying admixture (VMA). A total of sixteen columns with a standard compressive strength of about 50 MPa for both SCC and NC were tested by applying concentric axial load through the concrete core. Columns were fabricated without and with longitudinal and hoop reinforcement (Series I and Series II, respectively) in addition to the tube confinement. The slenderness of the columns expressed as height to diameter ratio (H/D) ranged between 4.8 and 9.5 for Series CI and between 3.1 and 6.5 for Series CII. The strength and ductility of SCC columns were found comparable to those of their NC counterparts as the maximum strength enhancement in NC columns ranged between 1.1% and 7.5% only. No significant difference in strain development was found due to the presence of SCC or NC or due to the presence of longitudinal and hoop reinforcement. Biaxial stress development in the steel tube as per von Mises yield criterion showed similar characteristics for both SCC and NC columns. The confined strength ($f^{\prime}_{cc}$) of SCC was found to be lower than that of NC and $f^{\prime}_{cc}$ also decreased with the increase of slenderness of the columns. Analytical models for the prediction of confined concrete strength and axial strength of CFST columns were developed and their performance was validated through test results. The proposed models were found to predict the axial strength of CFST columns better than existing models and Code based design procedures.

Development of Auto Tracking System for Baseball Pitching (투구된 공의 실시간 위치 자동추적 시스템 개발)

  • Lee, Ki-Chung;Bae, Sung-Jae;Shin, In-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.81-90
    • /
    • 2007
  • The effort identifying positioning information of the moving object in real time has been a issue not only in sport biomechanics but also other academic areas. In order to solve this issue, this study tried to track the movement of a pitched ball that might provide an easier prediction because of a clear focus and simple movement of the object. Machine learning has been leading the research of extracting information from continuous images such as object tracking. Though the rule-based methods in artificial intelligence prevailed for decades, it has evolved into the methods of statistical approach that finds the maximum a posterior location in the image. The development of machine learning, accompanied by the development of recording technology and computational power of computer, made it possible to extract the trajectory of pitched baseball from recorded images. We present a method of baseball tracking, based on object tracking methods in machine learning. We introduce three state-of-the-art researches regarding the object tracking and show how we can combine these researches to yield a novel engine that finds trajectory from continuous pitching images. The first research is about mean shift method which finds the mode of a supposed continuous distribution from a set of data. The second research is about the research that explains how we can find the mode and object region effectively when we are given the previous image's location of object and the region. The third is about the research of representing data into features that we can deal with. From those features, we can establish a distribution to generate a set of data for mean shift. In this paper, we combine three works to track baseball's location in the continuous image frames. From the information of locations from two sets of images, we can reconstruct the real 3-D trajectory of pitched ball. We show how this works in real pitching images.

Enhancement of 1,3-Dihydroxyacetone Production from Gluconobacter oxydans by Combined Mutagenesis

  • Lin, Xi;Liu, Sha;Xie, Guangrong;Chen, Jing;Li, Penghua;Chen, Jianhua
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1908-1917
    • /
    • 2016
  • Wild strain L-6 was subjected to combined mutagenesis, including UV irradiation, atmospheric and room temperature plasma, and ion beam implantation, to increase the yield of 1,3-dihydroxyacetone (DHA). With application of a high-throughput screening method, mutant Gluconobacter oxydans I-2-239 with a DHA productivity of 103.5 g/l in flask-shake fermentation was finally obtained with the starting glycerol concentration of 120 g/l, which was 115.7% higher than the wild strain. The cultivation time also decreased from 54 h to 36 h. Compared with the wild strain, a dramatic increase in enzyme activity was observed for the mutant strain, although the increase in biomass was limited. DNA and amino acid sequence alignment revealed 11 nucleotide substitutions and 10 amino acid substitutions between the sldAB of strains L-6 and I-2-239. Simulation of the 3-D structure and prediction of active site residues and PQQ binding site residues suggested that these mutations were mainly related to PQQ binding, which was speculated to be favorable for the catalyzing capacity of glycerol dehydrogenase. RT-qPCR assay indicated that the transcription levels of sldA and sldB in the mutant strain were respectively 4.8-fold and 5.4-fold higher than that in the wild strain, suggesting another possible reason for the increased DHA productivity of the mutant strain.

Finite element modeling of corroded RC beams using cohesive surface bonding approach

  • Al-Osta, Mohammed A.;Al-Sakkaf, Hamdi A.;Sharif, Alfarabi M.;Ahmad, Shamsad;Baluch, Mohammad H.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • The modeling of loss of bond between reinforcing bars (rebars) and concrete due to corrosion is useful in studying the behavior and prediction of residual load bearing capacity of corroded reinforced concrete (RC) members. In the present work, first the possibility of using different methods to simulate the rebars-concrete bonding, which is used in three-dimensional (3D) finite element (FE) modeling of corroded RC beams, was explored. The cohesive surface interaction method was found to be most suitable for simulating the bond between rebars and concrete. Secondly, using the cohesive surface interaction approach, the 3D FE modeling of the behavior of non-corroded and corroded RC beams was carried out in an ABAQUS environment. Experimental data, reported in literature, were used to validate the models. Then using the developed models, a parametric study was conducted to examine the effects of some parameters, such as degree and location of the corrosion, on the behavior and residual capacity of the corroded beams. The results obtained from the parametric analysis using the developed model showed that corrosion in top compression rebars has very small effect on the flexural behaviors of beams with small flexural reinforcement ratio that is less than the maximum ratio specified in ACI-318-14 (singly RC beam). In addition, the reduction of steel yield strength in tension reinforcement due to corrosion is the main source of reducing the load bearing capacity of corroded RC beams. The most critical corrosion-induced damage is the complete loss of bond between rebars and the concrete as it causes sudden failure and the beam acts as un-reinforced beam.

Prediction of Residual Stress Caused by IML Process and Deformation Due to Thermal Impact (IML 성형과정에 따른 잔류응력 및 열 충격에 의한 변형 예측)

  • Lee, Jae-Won;Jang, Eu-Gene;Shin, Seung-Won;Park, Seung-Ho;Chung, Ha-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.375-382
    • /
    • 2010
  • In this study, we developed a method to predict the residual stress distribution and thermal deformation caused by in-mold labeling (IML) processes. IML is one of the injection molding processes for injecting a material into a cavity and subsequently inserting a decorated film. The IML process can yield products with decorations of outstanding excellent quality in only one working step. Although the IML process has various advantages, it causes defects such as film delamination, wash-out, and flow marks. In particular, deformation is considered to be a major concern in terms of delamination. To validate the model, the deformation predicted by using a numerical model was compared with experimental results, and both results showed good agreement. We verified that the developed method can be used to obtain the design guidelines for preventing delamination in the initial design stage of the IML process.

Application of Highland Kimchi Cabbage Status Map for Growth Monitoring based on Unmanned Aerial Vehicle

  • Na, Sang-Il;Park, Chan-Won;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.469-479
    • /
    • 2016
  • Kimchi cabbage is one of the most important vegetables in Korea and a target crop for market stabilization as well. In particular Kimchi cabbages in a highland area are very sensitive to the fluctuations in supply and demand. Yield variability due to growth conditions dictates the market fluctuations of Kimchi cabbage price. This study was carried out to understand the distribution of the highland Kimchi cabbage growth status in Anbandeok. Anbandeok area in Gangneung, Gangwon-do, Korea is one of the main producing districts of highland Kimchi cabbage. The highland Kimchi cabbage status map of each growth factor was obtained from unmanned aerial vehicle (UAV) imagery and field survey data. Six status maps include UAVRGB image map, normalized difference vegetation index (NDVI) distribution/anomaly map, Crop distribution map, Planting/Harvest distribution map, Growth parameter map and Growth disorder map. As a result, the highland Kimchi cabbage status maps from May 31 to Sep. 6 in 2016 were presented to show spatial variability in the field. The benefits of the highland Kimchi cabbage status map can be summarized as follows: crop growth monitoring, reference for field observations and survey, the relative comparison of the growth condition in field scale, evaluation of growth in comparison of average year, change detection of annual crops or planting areas, abandoned fields monitoring, prediction of harvest season etc.

Basic Research for Resistance Prediction of Aluminium Alloy Plate Girders Subjected to Patch Loading (패치로딩을 받는 알루미늄 합금 플레이트 거더의 강도 예측에 대한 기초 연구)

  • Oh, Young-Cheol;Bae, Dong-Gyun;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.218-227
    • /
    • 2014
  • In this paper, it performed to the elastic-plastic large deflection series analysis using the experimental model and predicted a failure mode and ultimate strength. The collapse mode of numerical analysis model is formed a plastic hinge on loaded flange and consistent with the collapse mode of experimental model. Also, The yield line is formed in the web could observed that have occurred the crippling collapse mode and the ultimate loads of the experimental model and numerical analysis model have maintained linearly Means 1.07, Standard deviation 0.04, Coefficient of variation(COV) 0.04 and the result of ultimate loads have appeared approximately 8% error rate. it was found that very satisfied to the experimental results and the applied rules. if it is considered to be maintain a reasonable safety level, it is possible to predict the failure modes of aluminium alloy plate girders and ultimate loads.

Study on the turbulent structure for two-dimensional recirculating flows by curvature dependent 2-equation model (曲率修正2方程式모델을 利용한 2次元 再循環 亂流 流動構造의 硏究)

  • 박상우;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.444-453
    • /
    • 1987
  • In the present study, a new computational closure model is proposed in order to contain physical models in the k- and .epsilon.- equations. The time scale of the third-order diffusive transport of turbulent kinetic energy in a curved streamline flow field is assumed as a function of a velocity time scale and a curvature time scale, the latter being derived from the analogy between buoyancy and streamline curvature effects on turbulence. The curvature time scale is represented by a combination of Brunt-Vaisala frequency of the curvature instability and the velocity time scale. Besides the modification of diffusive transport time scale, the destruction term in the dissipation rate equation is modeled to incorporate the streamline curvature effect on the dissipation rate of turbulent kinetic energy as a function of the ratio between velocity time scale and curvature time scale. The new curvature dependent 2-equation model is found to yield very good prediction accuracy for the various turbulent recirculating flows. Particurarly, the recovery of the mean velocity profile in the redeveloping region after the reattachment is correctly simulated by the present model.