Purification of Streptomyces Phospholipase D by Immunoaffinity Chromatoghraphy using Peptide Antibodies

Streptomyces phospholipase D의 정제를 위한 면역친화 크로마토그래피의 개발

  • Park, In-Sun (Division of Biological Sciences, Chonbuk National University) ;
  • Kim, Young-Ah (Division of Biological Sciences, Chonbuk National University) ;
  • Jeong, Su-Jin (Division of Biological Sciences, Chonbuk National University) ;
  • Uhm, Tai-Boong (Division of Biological Sciences, Chonbuk National University)
  • 박인선 (전북대학교 지연과학대학 생물학과) ;
  • 김영아 (전북대학교 지연과학대학 생물학과) ;
  • 정수진 (전북대학교 지연과학대학 생물학과) ;
  • 엄태붕 (전북대학교 지연과학대학 생물학과)
  • Published : 2006.12.30

Abstract

An immunoaffinity chromatography for the specific binding of Streptomyces somaliensis phospholipase D (PLD) that is considered as an industrially potential enzyme was developed. By using the protein structure prediction programs and the X-ray crystal structure of a Streptomyces PLD, 5 different epitopes with high antigenicity that are predicted to locate on the surface of the S. somaliensis PLD were selected and then synthesized for the preparation of antipeptide antibodies. Each purified rabbit IgG was coupled with NHS-activated Sepharose to prepare the immunoaffinity resins. After one-step purification of the culture concentrate on the antipeptide IgG-coupled Sepharose column, SDS-PAGE and the Western blot analysis of the purified samples showed that purification of PLD on the affinity columns was satisfactory, indicating that the peptide design using the structural information of Streptomyces PLDs was rational. However, the purified PLD in the solution aggregated rapidly, which resulted in poor specific activity and low purification yield.

Streptomyces somaliensis가 생산하는 phospholipase D (PLD)를 정제하기 위하여 펩티드 항체 결합 면역 친화 크로마토그래피용 칼럼을 개발하였다. 단백질 구조 예측 프로그램과 Streptomyces PLD X-선 결정구조를 참조하여, S. somaliensis PLD의 1차 구조로부터 항원특성이 높고. 표면에 위치하는 것으로 예상된 5종류의 펩티드들을 epitope로 선정한 뒤, 이에 대한 항체로 면역친화 크로마토그래피용 칼럼을 제작하였다. 배양 농축액을 칼럼에 통과시켜 정제한 활성 분획을 SDS-PAGE 및 Western blot 결과, 칼럼 종류에 따라 순수한 PLD또는 35 kDa의 단백질 불순물만을 포함하는 PLD 정제 분획을 보여 면역친화 칼럼의 높은 항원결합 특이성을 보여주었다. 그러나 수용액상에서 PLD 자체의 구조적 불안정성 때문에 정제 후 PLD의 특이적 활성 및 정제 수율은 낮았다.

Keywords

References

  1. 정수진, 이선희, 엄태붕. 2004. Streptomyces somaliensis가 생산하는 세포외 phospholipase D의 유전자 서열분석과 transphosphatidylation활성 특성. 미생물학회지 40, 211-216
  2. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Cuff, J.A., M.E. Clamp, A.S. Siddiqui, M. Finlay, and G.J. Barton. 1998. Jpred: A Consensus Secondary Structure Prediction Server. Bioinformatics 14, 892-893 https://doi.org/10.1093/bioinformatics/14.10.892
  4. Emini, E.A., J.V. Hughes, D.S. Perlow, and J. Boger. 1985. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol. 55, 836-839
  5. Hasegawa, M. and N. Ota. 1992. Production of phospholipase DK. Japan Patent. JPI992088981-A
  6. Hatanaka, T., M. Kubota-Akizawa, T. Negish, and T. Hagishita, 2002. Study on thermostability of phospholipase D from Streptomyces sp. Biochim. Biophys. Acta 1598, 156-164 https://doi.org/10.1016/S0167-4838(02)00363-1
  7. Hatanaka, T., T. Negish, M. Kubota-Akizawa, and T. Hagishita. 2002. Purification, characterization, cloning and sequencing of phospholipase D from Streptomyces septatus TH-2. Enzyme Microb. Thechnol. 31, 233-241 https://doi.org/10.1016/S0141-0229(02)00121-7
  8. Imamura, S. and Y. Horiuti. 1978. Enzymatic determination of phospholipase D activity with choline oxidase. J. Biochem. 83, 677-680 https://doi.org/10.1093/oxfordjournals.jbchem.a131960
  9. Iwasaki, Y., H. Nakano, and T. Yamane. 1994. Phospholipase D from Streptomyces antibioticus: cloning, sequencing, expression, and relationship to other phospholipases. Appl. Microbiol. Biotechnol. 42, 290-299
  10. Jone, K.L. 1949. Fresh isolation of Actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J. Bacteriol. 57, 141-145
  11. Kolaskar, A.S. and P.C. Tongaonkar. 1990. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 276, 172-174 https://doi.org/10.1016/0014-5793(90)80535-Q
  12. Leiros, I., F. Secundo, C. Zambonelli, S. Servi, and E. Hough. 2000. The first crystal structure of a phospholipase: D. Structure 8, 655-667 https://doi.org/10.1016/S0969-2126(00)00150-7
  13. Ogino, C., Y. Negi, T. Matsumiya, K. Nakaoka, A. Kondo, S. Kuroda, S. Tokuyarna, S. kikkawa, T. Yamane, and H. Fukuda. 1999. Purification, characterization, and sequence determination of phospholipase D secreted by Streptoverticillium cinnamoneum. J. Biochem. 125, 263-269 https://doi.org/10.1093/oxfordjournals.jbchem.a022282
  14. Rost, B. 1996. PHD: predicting one-dimensional protein structure by profile based neural networks. Method Enzymol. 266,525-539 https://doi.org/10.1016/S0076-6879(96)66033-9
  15. Thompson J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  16. Uhm, T.B. and S.H. Lee. 2003. A peptide antibody for rapid screening of Streptomyces species producing phospholipase D. Biotechnol. Lett. 25, 883-886 https://doi.org/10.1023/A:1024061028164
  17. Yang, H. and M.F. Roberts. 2002. Cloning, overexpression, and characterization of a Bacteriol $Ca^{2+}$-dependent phospholipase D. Protein Sci. 11, 2958-2968 https://doi.org/10.1110/ps.0225302