• 제목/요약/키워드: Yield Loci

검색결과 56건 처리시간 0.027초

Mapping of Quantitative Trait Loci Associated with Viviparous Germination in Rice

  • Lee, Seung-Yeob;Ahn, Jeong-Ho;Cha, Young-Soon;Yun, Doh-Won;Lee, Myung-Cheol;Eun, Moo-Young
    • 한국작물학회지
    • /
    • 제51권6호
    • /
    • pp.565-570
    • /
    • 2006
  • The viviparous germination (VG) with lodging caused the yield reduction and quality deterioration in rice. We carried out the evaluation of VG tolerance (on the 40th day after heading) and mapping QTLs associated with VG tolerance using the recombinant inbred lines (M/G RILs) from a cross between Milyang 23 (japonica/indica) and Gihobyeo (japonica). The VG rates of Milyang 23 and Gihobyeo were 0.0 and 7.0%, respectively. The averaged VG rate of 162 M/G RILs was 7.7%, and their range was from 0.0 to 50.9%. Of the 162 RILs, 144 lines were tolerant less than 10%, and 18 lines were susceptible more than 10%. Using the M/G RIL Map, three QTLs associated with the viviparous trait were detected on chromosome 2 (qVG 2-1 and qVG 2-2) and 8 (qVG 8). qVG 2-1 was linked to RM 32D and RZ 166, and had LOD score of 2.97. qVG 2-2 was tightly linked to E13M59.119-Pl and E13M59.M003-P2, and showed higher LOD score of 3.41. qVG 8 was linked to RM33 and TCT116, and had LOD score of 2.67. The total phenotypic variance explained by the three QTLs was about 24.4% of the total variance in the population. The detection of new QTLs associated with VG tolerance will provide important informations for the seed dormancy, low temperature germination, or comparative genetics.

Association between PCR-RFLP Polymorphisms of Five Gene Loci and Milk Traits in Chinese Holstein

  • Zhang, R.F.;Chen, H.;Lei, C.Z.;Fang, X.T.;Zhang, Y.D.;Hu, S.R.;Su, L.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권2호
    • /
    • pp.166-171
    • /
    • 2007
  • The objective of this study was to assess the association of polymorphisms in ${\kappa}$-cn, ${\beta}$-lg, ${\beta}$-lg 5′ flanking region, CSN1S2, and IGFBP-3 genes with milk production traits and mastitis-related traits in Chinese Holstein. Traits analyzed were 305 day standard milk yield, protein percentage, fat percentage, the ratio of fat percentage and protein percentage, pre-somatic cell count, somatic cell count, and somatic cell score, respectively. CSN1S2 locus was uninformative because only one genotype BB was found in Chinese Holstein. Allele frequencies of A and B in IGFBP-3 gene were 0.5738 and 0.4262 in Chinese Holstein population, which was different from reported Qinchuan cattle population. The genotypes of animals at IGFBP-3 locus significantly affected 305 day standard milk yield, protein percentage, and somatic cell score. The ${\beta}$-lg genotypes had a significant effect on protein percentage and the ratio of fat percentage and protein percentage. Polymorphism in ${\beta}$-lg 5′ flanking region was associated with 305 day standard milk yield, protein percentage, fat percentage, pre-somatic cell count, and somatic cell count. No significant associations of the polymorphism in ${\kappa}$-cn gene were observed for any trait.

Identification of QTLs for Some Agronomic Traits in Rice Using an Introgression Line from Oryza minuta

  • Rahman, Md Lutfor;Chu, Sang Ho;Choi, Min-Sun;Qiao, Yong Li;Jiang, Wenzhu;Piao, Rihua;Khanam, Sakina;Cho, Young-Il;Jeung, Ji-Ung;Jena, Kshirod K.;Koh, Hee-Jong
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.16-26
    • /
    • 2007
  • Wild progenitor species provide potential gene sources for complex traits such as yield and multiple resistances to biotic and abiotic stresses, and thus are expected to contribute to sustainable food supplies. An introgression line 'IR71033-121-15' was derived from a wild species Oryza minuta (2n = 48, BBCC, Acc No. 101141) at IRRI. Introgression analysis using 530 SSR and STS markers revealed that at least 14 chromosomal segments distributed over 12 chromosomes had been introgressed from O. minuta. An $F_{2:3}$ population from the cross between IR71033 and Junambyeo (a Korean japonica cultivar) consisting of 146 lines was used for quantitative trait loci (QTL) analysis of 16 agronomic traits. A total of 36 single-locus QTLs (S-QTLs) and 45 digenic epistasis (E-QTLs) were identified. In spite of it's inferiority of O. minuta for most of the traits studied, its alleles contributed positively to 57% of the QTLs. The other QTLs originated from either parent, IR71033 or Junambyeo. QTLs for phenotypically correlated traits were mostly detected on introgressed segments. Fourteen QTLs corresponded to QTLs reported earlier, indicating that these QTLs are stable across genetic backgrounds. Twenty-two QTLs controlling yield and its components had not been detected in previous QTL studies. Of these, thirteen consisted of potentially novel alleles from O. minuta. QTLs from O. minuta introgression could be new sources of natural variation for the genetic improvement of rice.

Genetic Improvement for Yield and Yield Related Traits by Introgressive Hybridization in Sweet Corn

  • Nigussie Mandefro;Saleh Ghizan
    • 한국작물학회지
    • /
    • 제50권2호
    • /
    • pp.91-96
    • /
    • 2005
  • Proper choice of source populations contributes to the ultimate success of selection for genetic improvement. The source population should possess the most desirable alleles at as many loci as possible for intra population improvement. Such desirable alleles can be intensified by introgression of exotic germ plasm into locally adapted ones through hybridization followed by selection. The objectives of this study were to determine the mean performance, genetic variability $({\sigma}^2G)$ and heritability of fresh ear yield and other important traits within two sweet corn source populations, $BC1-10{\times}Syn-II$ and BC2-10. One hundred selfed progenies from each of the two source populations were evaluated in a $10\times10$ lattice design, at the Institute of Bioscience (IBS) Farm, University of Putra Malaysia (UPM) following the recommended cultural practices. Significant differences among selfed progenies within $BC1-10{\times}Syn-II$ were observed for all traits, while differences among selfed progenies within BC2-10 were noted for fresh ear yield, ear length, ear diameter, number of kernels per row, ear height, days to tasseling and days to silking. Progenies developed from $BC1-10{\times}Syn-II$ population had higher estimates of ${\sigma}^2G$ than did progenies from BC2-10 population for number of kernel rows per ear, total soluble solids, plant height, days to tasseling and days to silking, showing that selection to improve these traits would be more effective in selfed progenies of $BC1-10{\times}Syn-II$ than that in BC2-10. On the other hand, progenies developed from BC2-10 population had higher estimates of ${\sigma}^2G$ for ear length, ear diameter and ear height, indicating that progenies from this population would have better genetic gain than $BC1-10{\times}Syn-II$. Comparable estimates of genetic variance were found for fresh ear yield, and number of kernels per row, indicating that genetic improvement of the two source populations is expected to produce similar genetic gains for these two traits. Therefore, selfed progenies developed from both source populations could be used to improve the two populations for various traits and thereby develop superior genotypes for immediate use in the production system.

QTL Identification Using Combined Linkage and Linkage Disequilibrium Mapping for Milk Production Traits on BTA6 in Chinese Holstein Population

  • Hu, F.;Liu, J.F.;Zeng, Z.B.;Ding, X.D.;Yin, C.C.;Gong, Y.Z.;Zhang, Q.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권10호
    • /
    • pp.1261-1267
    • /
    • 2010
  • Milk production traits are important economic traits for dairy cattle. The aim of the present study was to refine the position of previously detected quantitative trait loci (QTL) on bovine chromosome 6 affecting milk production traits in Chinese Holstein dairy cattle. A daughter design with 918 daughters from 8 elite sire families and 14 markers spanning the previously identified QTL region were used in the analysis. We employed a combined linkage and linkage disequilibrium analysis (LDLA) approach with two options for calculating the IBD probabilities, one was based on haplotypes of all 14 markers (named Method 1) and the other based on haplotypes with sliding windows of 5 markers (named Method 2). For milk fat yield, the two methods revealed a highly significant QTL located within a 6.5 cM interval (Method 1) and a 4.0 cM interval (Method 2), respectively. For milk protein yield, a highly significant QTL was detected within a 3.0 cM interval (Method 1) or a 2.5 cM interval (Method 2). These results confirmed the findings of our previous study and other studies, and greatly narrowed down the QTL positions.

SNP-Based Genetic Linkage Map and Quantitative Trait Locus Mapping Associated with the Agronomically Important Traits of Hypsizygus marmoreus

  • Oh, Youn-Lee;Choi, In-Geol;Jang, Kab-Yeul;Kim, Min-Seek;Oh, Min ji;Im, Ji-Hoon
    • Mycobiology
    • /
    • 제49권6호
    • /
    • pp.589-598
    • /
    • 2021
  • White strains of Hypsizygus marmoreus are more difficult to cultivate than are brown strains; therefore, new white strain breeding strategies are required. Accordingly, we constructed the genetic map of H. marmoreus with 1996 SNP markers on 11 linkage groups (LGs) spanning 1380.49 cM. Prior to analysis, 82 backcrossed strains (HM8 lines) were generated by mating between KMCC03106-31 and the progenies of the F1 hybrid (Hami-18 × KMCC03106-93). Using HM8, the first 23 quantitative trait loci (QTLs) of yield-related traits were detected with high limit of detection (LOD) scores (1.98-9.86). The length, thickness, and hardness of the stipe were colocated on LG 1. Especially, length of stipe and thickness of stipe were highly correlated given that the correlation coefficients were negative (-0.39, p value ≤ .01). And a typical biomodal distribution was observed for lightness of the pileus and the lightness of the pileus trait belonged to the LG 8, as did traits of earliness and mycelial growth in potato dextrose agar (PDA) medium. Therefore, results for color traits can be suggested that color is controlled by a multi-gene of one locus. The yield trait was highly negatively correlated with the traits for thickness of the stipe (-0.45, p value ≤ .01). Based on additive effects, the white strain was confirmed as recessive; however, traits of mycelial growth, lightness, and quality were inherited by backcrossed HM8 lines. This new genetic map, finely mapped QTLs, and the strong selection markers could be used in molecular breeding of H. marmoreus.

Phenotypic and Marker Assisted Evaluation of Korean Wheat Cultivars

  • Jung, Yeonju;Park, Chul Soo;Jeung, Ji-Ung;Kang, Chon-Sik;Lee, Gi-An;Choi, Yu-Mi;Lee, Jung-Ro;Lee, Myung-Chul;Kim, Chung-Kon;Seo, Yong Weon
    • 한국육종학회지
    • /
    • 제43권4호
    • /
    • pp.273-281
    • /
    • 2011
  • Fusarium head blight (FHB), also known as scab, caused mainly by Fusarium graminearum is a devastating disease of wheat in regions that are warm and humid during flowering. In addition to significant yield and quality losses, the mycotoxin deoxynivalenol produced by the pathogen in infected wheat kernels is a serious problem for food and feed safety. Twenty- three Korean cultivars and "Sumai 3", which is a FHB-resistant Chinese cultivar were tested for Type I, Type II resistances of FHB. Three cultivars were identified as resistant in Type I assessment, and two cultivars were resistant in Type II assessment. Genetic variation and relationship among the cultivars were evaluated on the basis of 11 Simple Sequence Repeat (SSR) and 29 Sequence Tagged Site (STS) markers that were linked to FHB resistance Quantitative Trait Loci (QTL) on chromosome 3BS. One SSR and 7 STS markers detected polymorphisms. Especially, using a STS marker (XSTS3B-57), 32.4% of the variation for Type II FHB resistance could be explained. Genetic relationship among Korean wheat cultivars was generally consistent with their released year. These markers on chromosome 3BS have the potential for accelerating the development of Korean wheat cultivars with improved Fusarium head blight resistance through the use of marker-assisted selection.

Dry matter and grain production of a near-isogenic line carrying a 'Takanari' (high yielding, Indica) allele for increased leaf inclination angle in rice with the 'Koshihikari' (Japonica) genetic background

  • San, Nan Su;Otsuki, Yosuke;Adachi, Shunsuke;Yamamoto, Toshio;Ueda, Tadamasa;Tanabata, Takanari;Ookawa, Taiichiro;Hirasawa, Tadashi
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.32-32
    • /
    • 2017
  • To increase rice production, manipulating plant architecture, especially developing new high-yielding cultivars with erect leaves, is crucial in rice breeding programs. Leaf inclination angle determines the light extinction coefficient (k) of the canopy. Erect leaves increase light penetration into the canopy and enable dense plantings with a high leaf area index, thus increasing biomass production and grain yield. Because of erect leaves, the high-yielding indica rice cultivar 'Takanari' has smaller k during ripening than 'Koshihikari', a japonica cultivar with good eating quality. In our previous study, using chromosome segment substitution lines (CSSLs) derived from a cross between 'Takanari' and 'Koshihikari', we detected seven quantitative trait loci (QTLs) for leaf inclination angle on chromosomes 1 (two QTLs), 2, 3, 4, 7, and 12. In this study, we developed a near-isogenic line (NIL-3) carrying a 'Takanari' allele for increased leaf inclination angle on chromosome 3 in the 'Koshihikari' genetic background. We compared k, dry matter production, and grain yield of NIL-3 with those of 'Koshihikari' in the field from 2013 to 2016. NIL-3 had higher inclination angles of the flag, second, and third leaves at full heading and 3 (- 4) weeks after full heading and smaller k of the canopy at the ripening stage. Biomass at full heading and leaf area index at full heading and at harvest did not significantly differ between NIL-3 and 'Koshihikari'. However, biomass at harvest was significantly greater in NIL-3 than in 'Koshihikari' due to a higher net assimilation rate at the ripening stage. The photosynthetic rates of the flag and third leaves did not differ between NIL-3 and Koshihikari at ripening. Grain yield was higher in NIL-3 than 'Koshihikari'. Higher panicle number per square meter in NIL-3 contributed to the higher grain yield of NIL-3. We conclude that the QTL on chromosome 3 increases dry matter and grain production in rice by increasing leaf inclination angle.

  • PDF

Novel quantitative trait loci for the strong-culm and high-yield related traits in rice detected from the F2 population between the super thick-culm and super grain-bearing line 'LTAT-29' and the high-yielding variety 'Takanari'

  • Nomura, Tomohiro;Yamamoto, Toshio;Ueda, Tadamasa;Yonemaru, Junichi;Abe, Akira;Adachi, Shunsuke;Hirasawa, Tadashi;Ookawa, Taiichiro
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.95-95
    • /
    • 2017
  • Lodging is a serious issue in rice production, because it drastically decreases the biomass production and grain yield. Since the Green Revolution, the lodging resistance has been increased by lowering the moment of above-ground parts due to the short culm by the semi-dwarf gene sd1. However, it has been pointed out that sd1 alone has suppressive effects for biomass production and yield. To increase rice yield, the long-culm and large panicle type varieties with a superior lodging resistance need to be developed. To improve the lodging resistance and yield of these type varieties, it would be effective to identify novel alleles for these traits underlying natural variations in rice and to pyramid these alleles to a single rice variety. In order to perform this strategy, we have developed new rice lines derived from crosses among varieties with superior alleles. At first, TULT-gh-5-5 was selected from a cross between strong culm and high biomass variety Leaf Star and high-yielding variety Takanari, and TUAT-32HB was selected from a cross between high-yielding variety Akenohoshi and Takanari. Then, we developed the super thick-culm and super grain-bearing line, LTAT-29 derived from a cross between TULT-gh-5-5 and TUAT-32HB. In the current study, to identify the QTLs and genes relating to the strong culm and the high yield of LTAT-29, we performed QTL analysis using SNPs markers with $F_2$ population derived from a cross between LTAT-29 and Takanari. LTAT-29 has never lodged throughout the growth period despite it had long culms and heavy panicles. LTAT-29 had a larger outer diameter of the culm and twice the size of the section modulus than Takanari. As a result, the bending moment at breaking of LTAT-29 was significantly larger than that of Takanari. Brown rice yield of LTAT-29 was $9.2t\;ha^{-1}$ about 10% higher than that of Takanari due to the larger number of spikelets per panicle. LTAT-29 had a greater number of secondary branches per panicle. In the $F_2$ population between LTAT-29 and Takanari, we found continuous frequency distributions in the section modulus and the spikelet number per panicle. Two QTLs increased the section modulus by the alleles of LTAT-29 were detected on Chr.1L and Chr.2L. One QTL increased the spikelet number per panicle of Takanari by the allele of LTAT-29 was detected on Chr.1L, and two QTLs increased the number of secondary branches per panicle by the alleles of LTAT-29 were detected on Chr.1L and Chr.4L. It was found that the alleles of these QTLs were the japonica type originated from Leaf Star or Akenohoshi. The novel QTLs for the traits related to super thick-culm and super grain-bearing and their combinations could be utilized for improving the lodging resistance and yield in rice varieties.

  • PDF

Morphological characteristics, chemical and genetic diversity of kenaf (Hibiscus cannabinus L.) genotypes

  • Ryu, Jaihyunk;Kwon, Soon-Jae;Kim, Dong-Gun;Lee, Min-Kyu;Kim, Jung Min;Jo, Yeong Deuk;Kim, Sang Hoon;Jeong, Sang Wook;Kang, Kyung-Yun;Kim, Se Won;Kim, Jin-Baek;Kang, Si-Yong
    • Journal of Plant Biotechnology
    • /
    • 제44권4호
    • /
    • pp.416-430
    • /
    • 2017
  • The kenaf plant is used widely as food and in traditional folk medicine. This study evaluated the morphological characteristics, functional compounds, and genetic diversity of 32 kenaf cultivars from a worldwide collection. We found significant differences in the functional compounds of leaves from all cultivars, including differences in levels of chlorogenic acid isomer (CAI), chlorogenic acid (CA), kaempferol glucosyl rhamnoside isomer (KGRI), kaempferol rhamnosyl xyloside (KRX), kaemperitrin (KAPT) and total phenols (TPC). The highest TPC, KAPT, CA, and KRX contents were observed in the C22 cultivars. A significant correlation was observed between flowering time and DM yield, seed yield, and four phenolic compounds (KGRI, KRX, CAI, and TPC) (P < 0.01). To assess genetic diversity, we used 80 simple sequence repeats (SSR) primer sets and identified 225 polymorphic loci in the kenaf cultivars. The polymorphism information content and genetic diversity values ranged from 0.11 to 0.79 and 12 to 0.83, with average values of 0.39 and 0.43, respectively. The cluster analysis of the SSR markers showed that the kenaf genotypes could be clearly divided into three clusters based on flowering time. Correlations analysis was conducted for the 80 SSR markers; morphological, chemical and growth traits were found for 15 marker traits (corolla, vein, petal, leaf, stem color, leaf shape, and KGRI content) with significant marker-trait correlations. These results could be used for the selection of kenaf cultivars with improved yield and functional compounds.