DOI QR코드

DOI QR Code

QTL Identification Using Combined Linkage and Linkage Disequilibrium Mapping for Milk Production Traits on BTA6 in Chinese Holstein Population

  • Hu, F. (College of Animal Science and Technology, Huazhong Agricultural University) ;
  • Liu, J.F. (Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University) ;
  • Zeng, Z.B. (Bioinformatics Research Center, North Carolina State University) ;
  • Ding, X.D. (Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University) ;
  • Yin, C.C. (Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University) ;
  • Gong, Y.Z. (College of Animal Science and Technology, Huazhong Agricultural University) ;
  • Zhang, Q. (Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University)
  • Received : 2010.01.04
  • Accepted : 2010.03.21
  • Published : 2010.10.01

Abstract

Milk production traits are important economic traits for dairy cattle. The aim of the present study was to refine the position of previously detected quantitative trait loci (QTL) on bovine chromosome 6 affecting milk production traits in Chinese Holstein dairy cattle. A daughter design with 918 daughters from 8 elite sire families and 14 markers spanning the previously identified QTL region were used in the analysis. We employed a combined linkage and linkage disequilibrium analysis (LDLA) approach with two options for calculating the IBD probabilities, one was based on haplotypes of all 14 markers (named Method 1) and the other based on haplotypes with sliding windows of 5 markers (named Method 2). For milk fat yield, the two methods revealed a highly significant QTL located within a 6.5 cM interval (Method 1) and a 4.0 cM interval (Method 2), respectively. For milk protein yield, a highly significant QTL was detected within a 3.0 cM interval (Method 1) or a 2.5 cM interval (Method 2). These results confirmed the findings of our previous study and other studies, and greatly narrowed down the QTL positions.

Keywords

References

  1. Abecasis, G. R. and W. O. Cookson. 2000. GOLD-graphical overview of linkage disequilibrium. Bioinformatics 16:182-183. https://doi.org/10.1093/bioinformatics/16.2.182
  2. Chen, H. Y., Q. Zhang, C. C. Yin, C. K. Wang, W. J. Gong and G.Mei. 2006. Detection of quantitative trait loci affecting milk production traits on bovine chromosome 6 in a Chinese Holstein population by the daughter design. J. Dairy Sci. 89:782-790. https://doi.org/10.3168/jds.S0022-0302(06)72140-3
  3. Cohen-Zinder, M., E. Seroussi, D. M. Larkin, J. J. Loor, A. Evertsvander Wind, J. H. Lee, J. K. Drackley, M. R. Band, A. G.Hernandez, M. Shani, H. A. Lewin, J. I. Weller and M. Ron.2005. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res. 15:936-944. https://doi.org/10.1101/gr.3806705
  4. Cohen, M., M. Reichenstein, A. Everts-van der Wind, J. Heon-Lee,M. Shani, H. A. Lewin, J. I. Weller, M. Ron and E. Seroussi. 2004. Cloning and characterization of FAM13A1--a gene near a milk protein QTL on BTA6: evidence for population-wide linkage disequilibrium in Israeli Holsteins. Genomics 84:374-383. https://doi.org/10.1016/j.ygeno.2004.03.005
  5. Farnir, F., B. Grisart, W. Coppieters, J. Riquet, P. Berzi, N.Cambisano, L. Karim, M. Mni, S. Moisio, P. Simon, D.Wagenaar, J. Vilkki and M. Georges. 2002. Simultaneous mining of linkage and linkage disequilibrium to fine map quantitative trait loci in outbred half-sib pedigrees: revisiting the location of a quantitative trait locus with major effect on milk production on bovine chromosome 14. Genetics 161:275-287.
  6. Fernando, R. L. and M. Grossman. 1989. Marker assisted selection using best linear unbiased prediction. Genet. Sel. Evol. 21:467-477. https://doi.org/10.1186/1297-9686-21-4-467
  7. Freyer, G., P. Sorensen, C. Kuhn, R. Weikard and I. Hoeschele.2003. Search for pleiotropic QTL on chromosome BTA6 affecting yield traits of milk production. J. Dairy Sci. 86: 999-1008. https://doi.org/10.3168/jds.S0022-0302(03)73683-2
  8. Gautier, M., R. R. Barcelona, S. Fritz, C. Grohs, T. Druet, D.Boichard, A. Eggen and T. H. Meuwissen. 2006. Fine mapping and physical characterization of two linked quantitative trait loci affecting milk fat yield in dairy cattle on BTA26. Genetics 172:425-436.
  9. Georges, M., D. Nielsen, M. Mackinnon, A. Mishra, R. Okimoto,A. T. Pasquino, L. S. Sargeant, A. Sorensen, M. R. Steele and X. Zhao. 1995. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139:907-920.
  10. Gilmour, A. R., B. J. Gogel, B. R. Cullis and R. Thompson. 2006. ASReml User Guide release 2.0. Rothamsted Research, Harpenden, United Kingdom.
  11. Grapes, L., M. Z. Firat, J. C. Dekkers, M. F. Rothschild and R. L. Fernando. 2006. Optimal haplotype structure for linkage disequilibrium-based fine mapping of quantitative trait loci using identity by descent. Genetics 172:1955-1965.
  12. Hoeschele, I., P. Uimari, F. E. Grignola, Q. Zhang and K. M. Gage. 1997. Advances in statistical methods to map quantitative trait loci in outbred populations. Genetics 147:1445-1457.
  13. Holmberg, M., G. Sahana and L. Andersson-Eklund. 2007. Fine mapping of a quantitative trait locus on chromosome 9 affecting non-return rate in Swedish dairy cattle. J. Anim. Breed. Genet. 124:257-263. https://doi.org/10.1111/j.1439-0388.2007.00669.x
  14. Ihara, N., A. Takasuga, K. Mizoshita, H. Takeda, M. Sugimoto, Y.Mizoguchi, T. Hirano, T. Itoh, T. Watanabe, K. M. Reed, W. M.Snelling, S. M. Kappes, C. W. Beattie, G. L. Bennett and Y. Sugimoto. 2004. A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res. 14:1987-1998. https://doi.org/10.1101/gr.2741704
  15. Khatkar, M. S., A. Collins, J. A. Cavanagh, R. J. Hawken, M.Hobbs, K. R. Zenger, W. Barris, A. E. McClintock, P. C.Thomson, F. W. Nicholas and H. W. Raadsma. 2006. A firstgeneration metric linkage disequilibrium map of bovine chromosome 6. Genetics 174:79-85. https://doi.org/10.1534/genetics.106.060418
  16. Khatkar, M. S., P. C. Thomson, I. Tammen and H. W. Raadsma. 2004. Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet. Sel. Evol. 36:163-190. https://doi.org/10.1186/1297-9686-36-2-163
  17. Kim, E. S., X. Shi, O. Cobanoglu, K. Weigel, P. J. Berger and B.W. Kirkpatrick. 2009. Refined mapping of twinning-rate quantitative trait loci on bovine chromosome 5 and analysis of insulin-like growth factor-1 as a positional candidate gene. J. Anim. Sci. 87:835-843.
  18. Kuhn, C., G. Freyer, R. Weikard, T. Goldammer and M. Schwerin.1999. Detection of QTL for milk production traits in cattle by application of a specifically developed marker map of BTA6. Anim. Genet. 30:333-340. https://doi.org/10.1046/j.1365-2052.1999.00487.x
  19. Mei, G., C. Yin, X. Ding and Q. Zhang. 2009. Fine mapping quantitative trait loci affecting milk production traits on bovine chromosome 6 in a Chinese Holstein population. J. Genet. Genomics 36:1-8. https://doi.org/10.1016/S1673-8527(09)60001-1
  20. Meuwissen, T. H. and M. E. Goddard. 2001. Prediction of identity by descent probabilities from marker-haplotypes. Genet. Sel. Evol. 33:605-34. https://doi.org/10.1186/1297-9686-33-6-605
  21. Meuwissen, T. H., A. Karlsen, S. Lien, I. Olsaker and M. E.Goddard. 2002. Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161:373-379.
  22. Nadesalingam, J., Y. Plante and J. P. Gibson. 2001. Detection of QTL for milk production on Chromosomes 1 and 6 of Holstein cattle. Mamm. Genome. 12:27-31. https://doi.org/10.1007/s003350010232
  23. Olsen, H. G., L. Gomez-Raya, D. I. Vage, I. Olsaker, H. Klungland,M. Svendsen, T. Adnoy, A. Sabry, G. Klemetsdal, N. Schulman, W. Kramer, G. Thaller, K. Ronningen and S. Lien. 2002. A genome scan for quantitative trait loci affecting milk production in Norwegian dairy cattle. J. Dairy Sci. 85:3124-30. https://doi.org/10.3168/jds.S0022-0302(02)74400-7
  24. Olsen, H. G., S. Lien, M. Gautier, H. Nilsen, A. Roseth, P. R. Berg,K. K. Sundsaasen, M. Svendsen and T. H. Meuwissen. 2005. Mapping of a milk production quantitative trait locus to a 420-kb region on bovine chromosome 6. Genetics 169:275-283.
  25. Olsen, H. G., S. Lien, M. Svendsen, H. Nilsen, A. Roseth, M.Aasland Opsal and T. H. Meuwissen. 2004. Fine mapping of milk production QTL on BTA6 by combined linkage and linkage disequilibrium analysis. J. Dairy Sci. 87:690-698. https://doi.org/10.3168/jds.S0022-0302(04)73212-9
  26. Olsen, H. G., T. H. Meuwissen, H. Nilsen, M. Svendsen and S. Lien. 2008. Fine mapping of quantitative trait Loci on bovine chromosome 6 affecting calving difficulty. J. Dairy Sci. 91:4312-4322. https://doi.org/10.3168/jds.2008-1000
  27. Ron, M., D. Kliger, E. Feldmesser, E. Seroussi, E. Ezra and J. I. Weller. 2001. Multiple quantitative trait locus analysis of bovine chromosome 6 in the Israeli Holstein population by a daughter design. Genetics 159:727-735.
  28. Schnabel, R. D., J. J. Kim, M. S. Ashwell, T. S. Sonstegard, C. P.Van Tassell, E. E. Connor and J. F. Taylor. 2005. Fine-mapping milk production quantitative trait loci on BTA6: analysis of the bovine osteopontin gene. Proc. Natl. Acad. Sci. USA. 102:6896-6901. https://doi.org/10.1073/pnas.0502398102
  29. Schopen, G. C., P. D. Koks, J. A. van Arendonk, H. Bovenhuis and M. H. Visker. 2009. Whole genome scan to detect quantitative trait loci for bovine milk protein composition. Anim. Genet. 40:524-537. https://doi.org/10.1111/j.1365-2052.2009.01880.x
  30. Sheehy, P. A., L. G. Riley, H. W. Raadsma, P. Williamson and P. C.Wynn. 2009. A functional genomics approach to evaluate candidate genes located in a QTL interval for milk production traits on BTA6. Anim. Genet. 40: 492-498. https://doi.org/10.1111/j.1365-2052.2009.01862.x
  31. Spelman, R. J., W. Coppieters, L. Karim, J. A. van Arendonk and H. Bovenhuis. 1996. Quantitative trait loci analysis for five milk production traits on chromosome six in the Dutch Holstein-Friesian population. Genetics. 144:1799-1808.
  32. Velmala, R. J., H. J. Vilkki, K. T. Elo, D. J. de Koning and A. V.Maki-Tanila. 1999. A search for quantitative trait loci for milk production traits on chromosome 6 in Finnish Ayrshire cattle. Anim. Genet. 30: 136-43. https://doi.org/10.1046/j.1365-2052.1999.00435.x
  33. Weikard, R., C. Kuhn, T. Goldammer, G. Freyer and M. Schwerin.2005. The bovine PPARGC1A gene: molecular characterization and association of an SNP with variation of milk fat synthesis. Physiol. Genomics 21:1-13. https://doi.org/10.1152/physiolgenomics.00103.2004
  34. Windig, J. J. and T. H. E. Meuwissen. 2004. Rapid haplotype reconstruction in pedigrees with dense marker maps. J. Anim. Breed. Genet. 121:26-39. https://doi.org/10.1046/j.1439-0388.2003.00439.x
  35. Xiong, M. and S. W. Guo. 1997. Fine-scale genetic mapping based on linkage disequilibrium: theory and applications. Am. J. Hum. Genet. 60:1513-1531. https://doi.org/10.1086/515475
  36. Zhang, Q., D. Boichard, I. Hoeschele, C. Ernst, A. Eggen, B.Murkve, M. Pfister-Genskow, L. A. Witte, F. E. Grignola, P.Uimari, G. Thaller and M. D. Bishop. 1998. Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree. Genetics 149: 1959-1973.
  37. Zhao, H. H., R. L. Fernando and J. C. Dekkers. 2007. Power and precision of alternate methods for linkage disequilibrium mapping of quantitative trait loci. Genetics 175:1975-1986. https://doi.org/10.1534/genetics.106.066480

Cited by

  1. Validation of Single Nucleotide Polymorphisms Associated with Carcass Traits in a Commercial Hanwoo Population vol.29, pp.11, 2016, https://doi.org/10.5713/ajas.15.0836
  2. Genome‐wide detection of signatures of selection in three Valdostana cattle populations vol.137, pp.6, 2010, https://doi.org/10.1111/jbg.12476