• Title/Summary/Keyword: Yeast immobilized column

Search Result 11, Processing Time 0.024 seconds

Continuous Rapid Fermentation of Soy Sauce by Immobilized Zygosaccharomyces rouxii BH-90 and Candida versatilis BH-91 Using Column Type Reactor (고정화된 Zygosaccharomyces rouxii BH-90과 Candida versatilis BH-90를 이용한 Column 형 reactor 에서 간장의 연속적 속성발효)

  • Ryu, Beung-Ho;Cho, Kyung-Ja;Chae, Young-Ju;Jin, Seung-Heun
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.366-372
    • /
    • 1993
  • The aim of this study was to find out the rapid fermentation of soy sauce from koji hydrolyzate using column type reactor packed with immobilized yeast cells. Each immobilized cell of Zygosaccharomyces rouxii BH-90 and Candida versatilis BH-91 in the packed column type reactor produced 2.8% ethyl alcohol and 18mg/l 4-ethylguaiacol over 96 hours under the optimal condition. Continuous fermentation was performed by immobilized Z. rouxii BH-90 packed in column type reactor. Immobilized Z. rouxii BH-90 produced 2.30~2.85% ethyl alcohol during 30 days, and decreased gradually from 40 days to 80 days. Also C. versatilis BH-91 produced 4-ethylguaiacol at the constant rate of 16~18mg/l and decreased gradually after 40 days. Final product of soy sauce contained 2.8% ethyl alcohol and 18mg/l 4-ethylguaiacol. However, amino acid compositions of final products were consisted of predominantly glutamic acid, leucine, arginine, aspartic acid, lysine and valine, which were more than 50% of total amino acid.

  • PDF

Calcium Alginate-entrapped Yeast Whole-cell Invertase (II. Enzymatic Properties of the Immobilized Cells) (Calcium Alginate에 포괄된 Yeast Invertase의 고정화 효소에 관한 연구 (II. 고정화 효모의 효소학적 특성))

  • Bang, Byeong-Ho;Lee, Sang-Geon;Yang, Cheol-Yeong
    • The Korean Journal of Food And Nutrition
    • /
    • v.2 no.2
    • /
    • pp.14-20
    • /
    • 1989
  • A strain of Saccharomyces cerevisiae BY-366 was isolated to produce a strong sucrose-hydrolyzing enzyme. After entrapment of yeast cell invertase with alginate, enzymatic properties of immobilized cells were investigated. The results are as follows. 1. The optimum pH of invertase in immobilized cells and non- immobilized cells was 6.0 and 5.0, and pH stability of invertase in immobilized cells and non- immobilized cells was 6.0 and 5.0, respectively. 2 Activation energy of immobilized cells was 4.7 kcal/mol. 3 The immobilized preparation exhibited high resistance to heat and urea Induced denaturation. 4, The bead size less than 2 mm in diameter was desirable. 5. In spite of repeated use, the enzyme activity of immobilized cells was inhibited slightly in batch reaction, and a small column of the immobilized preparation could hydrolyze relatively high concentration of sucrose almost quantitatively to more than 6 days.

  • PDF

Toluene Removal and Microbial Growth of Candida tropicalis Immobilized with Polymer Media in Airlift Bioreactors (효모 Candida tropicalis 고정화 담체를 이용한 Airlift 미생물반응기의 톨루엔 제거 및 미생물 성장)

  • Namgung, Hyeong-Kyu;Song, JiHyeon;Jung, Mi-Young;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.175-180
    • /
    • 2009
  • This study was conducted to improve biological degradation efficiency of toluene as a model volatile organic compound (VOC) using yeast Candida tropicalis and to suggest an effective method for bioreactor operation. The yeast strain was immobilized with polyethylene glycol (PEG), alginate, and powdered activated carbon (PAC). The yeast-immobilized polymer media were used as fluidized materials in an airlift bioreactor. Polymer media without PAC were also made and operated in another airlift bioreactor. The two bioreactors showed toluene removal efficiencies ranging 80-96% at loading rates of $10-35 g/m^3-hr$, and the bioreactor containing the polymer media with PAC achieved higher removal efficiency. Protein contents in the liquid phase showed that the bioreactor using the yeast-immobilized polymer media with PAC had a higher rate of microbial growth initially than that without PAC. In addition, the microbial growth rate inside of the polymer media with PAC was five times higher than that without PAC. Consequently, the polymer media containing the yeast strain and PAC could enhance removal efficiencies for VOCs, and the immobilization method improve microbial activity and stability for a long-term operation of biological systems.

Development of Continuous Beer Maturation Precess Using Immobilized Yeast (고정화 효모를 이용한 맥주의 연속 숙성공정 개발)

  • 박상재;이율락;김상호;최차용
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.438-443
    • /
    • 2000
  • Continuous processes using immobilized yeast were investigated in order to shorten beer maturation time. Three silica-based ceramic media and one cellulose-based medium were used. Diacetyl (DA) was one of the most distinctive compounds causing immature flavors. Heat treatment of green beer (GB) to convert a-acetolactate to DA was essential to shorten the time for beer maturation. The longer heat treatment time was needed at the lower temperature. Oxygen concentration in GB had a large influence on the conversion of a-acetolactate to DA. The lower the oxygen concentration in GB, the lower conversion ratio to DA. Heat treated GB was fed continuously to four kinds of immobilized yeast columns. DA concentration after immobilization columns was reduced to less than 0.1ppm at $3∼5^{\circ}C$ 180∼150 minutes retention time in all columns tested. This concentration is enough to fit the quality speification of commercialized product. Formation of a-acetolactate from residual sugars was higher in ceramic media column than cellulose media cloumn. The taste of beers from test processes were not the same as that of traditionally produced beer, but no off-flavors were detected in test samples, which shows that immobilized yeast columns have potentials as rapid processes for beer maturation.

  • PDF

Evaluating Carriers for Immobilizing Saccharomyces cerevisiae for Ethanol Production in a Continuous Column Reactor

  • Cha, Hye-Geun;Kim, Yi-Ok;Choi, Woon Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Mycobiology
    • /
    • v.42 no.3
    • /
    • pp.249-255
    • /
    • 2014
  • We evaluated a more practical and cost-effective immobilization carriers for ethanol production using the yeast Saccharomyces cerevisiae. Three candidate materials-rice hull, rice straw, and sawdust-were tested for their cell-adsorption capacity and operational durability. Derivatizations of rice hull, rice straw, and sawdust with the optimal concentration of 0.5 M of 2-(diethylamino)ethyl chloride hydrochloride (DEAE HCl) resulted in > 95% adsorption of the initial yeast cells at 2 hr for DEAE-rice hull and DEAE-sawdust and in only approximately 80% adsorption for DEAE-rice straw. In addition, DEAE-sawdust was found to be a more practical carrier for immobilizing yeast cells in terms of operational durability in shaking flask cultures with two different speeds of 60 and 150 rpm. Furthermore, the biosorption isotherms of DEAE-rice hull, -rice straw, and -sawdust for yeast cells revealed that the $Q_{max}$ of DEAE-sawdust (82.6 mg/g) was greater than that of DEAE-rice hull and DEAE-rice straw. During the 404-hr of continuous column reactor operation using yeast cells immobilized on DEAE-sawdust, no serious detachment of the yeast cells from the DEAE-sawdust was recorded. Ethanol yield of approximately 3.04 g/L was produced steadily, and glucose was completely converted to ethanol at a yield of 0.375 g-ethanol/g-glucose (73.4% of the theoretical value). Thus, sawdust is a promising practical immobilization carrier for ethanol production, with significance in the production of bioethanol as a biofuel.

Continuous Ethanol Fermentation using Immobilized Yeasts (고정화 효모에 의한 연속적 에탄올 발효)

  • 서근학;송승구;문성훈
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.199-203
    • /
    • 1986
  • A tubular tormentor was prepared by packing the wood chips and pumping the yeast solution of Saccharomyces formosensis in a tubular column. Investigations to characterize the ethanol fermentation in the immobilized cell tubular fermentor and to compare such a fermentors with other type fermentors were undertaken. Ethanol productivity of 24.4g EtOH/$\ell$.hr has been obtained from glucose substrate. This productivity is higher or compared favourably with that reported in immobilized bio-reactors.

  • PDF

Continuous Rapid Fermentation of Sardine Soy Sauce by Using Column Type Reactor Packed Immobilized Yeast Cells (고정화 효모를 충진한 column형 reactor에 의한 정어리 어간장의 속성 연속발효)

  • Kim, Seong-Joon;Shin, Dong-Bun;Ryu, Beung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.154-159
    • /
    • 1993
  • This present study was carried out particulary focusing on rapid fermentation of soy sauce by using column type reactor $(30\;cm{\times}5\;cm)$ packed each immobilized cells of Pediococcus halophilus R-22, Saccharomyces rouxii R-60 and Candida etchellsii H-50. When immobilized P. halophilus R-22 by column type reactor was performed continuously fermentation, lactic acid was produced $0.62{\sim}0.64%$ during 25 days and then decreased gradually after 30 days. S. rouxii R-60 was Produced the $2.1{\sim}2.5%$ ethylalcohol constantly for 35 days and also C. etchellsii H-50 was produced $14{\sim}16\;mg/l$ 4-ethylguaiacol for 35 days and then this products were decreased gradually after fermentation of 40 days. Final Products of fish sauce contained 1,721.6 mg% total nitrogen, 1,584.1 mg% amino-nitrogen, 0.75% lactic acid, 2.7% ethylalcohol and 18.2 mg/l 4-ethylguaiacol.

  • PDF

Interaction of Cytochrome c and $Mn^{2+}$ -Cytochrome c Peroxidase

  • Kim, Mun-kyoung;M. Kwon;Kim, K.;Sanghwa Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.44-44
    • /
    • 1999
  • Yeast cytochrome c peroxidase (CcP) was cloned and overexpressed in E. coli, and purified by a Ni$^{2+}$-affinity column. HoloCcP was obtained by reconstituting apoCcP with Mn$^{3+}$-protoporphyrin IX (MnPP). Electron paramagnetic resonance (EPR) spectra of spin-labeled holoCcP showed a slightly more immobilized signal than spin-labeled apoCcP.(omitted)

  • PDF

Two-Step Process Using Immobilized Saccharomyces cerevisiae and Pichia stipitis for Ethanol Production from Ulva pertusa Kjellman Hydrolysate

  • Lee, Sang-Eun;Kim, Yi-Ok;Choi, Woo Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1434-1444
    • /
    • 2013
  • We established a two-step production process using immobilized S. cerevisiae and P. stipitis yeast to produce ethanol from seaweed (U. pertusa Kjellman) hydrolysate. The process was designed to completely consume both glucose and xylose. In particular, the yeasts were immobilized using DEAE-corncob and DEAE-cotton, respectively. The first step of the process included a continuous column reactor using immobilized S. cerevisiae, and the second step included a repeated-batch reactor using immobilized P. stipitis. It was verified that the glucose and xylose in 20 L of medium containing the U. pertusa Kjellman hydrolysate was converted completely to about 5.0 g/l ethanol through the two-step process, in which the overall ethanol yield from total reducing sugar was 0.37 and the volumetric ethanol productivity was 0.126 g/l/h. The volumetric ethanol productivity of the two-step process was about 2.7 times greater than that when P. stipitis was used alone for ethanol production from U. pertusa Kjellman hydrolysate. In addition, the overall ethanol yield from glucose and xylose was superior to that when P. stipitis was used alone for ethanol production. This two-step process will not only contribute to the development of an integrated process for ethanol production from glucose-and xylose-containing biomass hydrolysates, but could also be used as an alternative method for ethanol production.