• Title/Summary/Keyword: Yaw errors

Search Result 78, Processing Time 0.025 seconds

Orientation Tracking Method based on Angular Displacement for Wireless Capsule Endoscope (각변위 방식을 이용한 캡슐의 오리엔테이션 측정 방법)

  • Yoo, Young-Sun;Kim, Myung-Yu;You, Young-Gap
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.27-32
    • /
    • 2008
  • In this paper, we propose an orientation tracking method and a digestion path model based on angular displacement. The proposed method expresses a capsule's orientation as 3-dimension vectors and its rotation angle. Errors in roll, pitch, and yaw representing capsule's orientation information is down to $1.6^{\circ}$. Using the proposed method we can measure a roll which is not Possible to be measured using the magnetic field method. We reduce algorithm complexity lower than a previous methods based on Euler angle.

4WS Unmanned Vehicle Lateral Control Using PUS and Gyro Coupled by Kalman Filtering

  • Lee, Kil-Soo;Park, Hyung-Gyu;Lee, Man-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.35 no.2
    • /
    • pp.121-130
    • /
    • 2011
  • The localization of vehicle is an important part of an unmanned vehicle control problem. Pseudolite ultrasonic system(PUS) is the method to find an absolute position with a high accuracy by using ultrasonic sensor. And Gyro is the inertial sensor to measure yaw angle of vehicle. PUS can be able to estimate the position of mobile robot precisely, in which errors are not accumulated. And Gyro is a more faster measure method than PUS. In this paper, we suggest a more accuracy method of calculating PUS which is numerical analysis approach named Newtonian method. And also propose the fusion method to increase the accuracy of estimated angle on moving vehicle by using PUS and Gyro integrated system by Kalman filtering. To control the 4WS unmanned vehicle, the trajectory following algorithm is suggested. And the new concept arbitration of goal controller is suggested. This method considers the desirability function of vehicle state. Finally, the performances of Newtonian method and designed controller were verified from the experimental results with the 4WS vehicle scaled 1/10.

Requirements Analysis of Image-Based Positioning Algorithm for Vehicles

  • Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.397-402
    • /
    • 2019
  • Recently, with the emergence of autonomous vehicles and the increasing interest in safety, a variety of research has been being actively conducted to precisely estimate the position of a vehicle by fusing sensors. Previously, researches were conducted to determine the location of moving objects using GNSS (Global Navigation Satellite Systems) and/or IMU (Inertial Measurement Unit). However, precise positioning of a moving vehicle has lately been performed by fusing data obtained from various sensors, such as LiDAR (Light Detection and Ranging), on-board vehicle sensors, and cameras. This study is designed to enhance kinematic vehicle positioning performance by using feature-based recognition. Therefore, an analysis of the required precision of the observations obtained from the images has carried out in this study. Velocity and attitude observations, which are assumed to be obtained from images, were generated by simulation. Various magnitudes of errors were added to the generated velocities and attitudes. By applying these observations to the positioning algorithm, the effects of the additional velocity and attitude information on positioning accuracy in GNSS signal blockages were analyzed based on Kalman filter. The results have shown that yaw information with a precision smaller than 0.5 degrees should be used to improve existing positioning algorithms by more than 10%.

3D Multi-floor Precision Mapping and Localization for Indoor Autonomous Robots (실내 자율주행 로봇을 위한 3차원 다층 정밀 지도 구축 및 위치 추정 알고리즘)

  • Kang, Gyuree;Lee, Daegyu;Shim, Hyunchul
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2022
  • Moving among multiple floors is one of the most challenging tasks for indoor autonomous robots. Most of the previous researches for indoor mapping and localization have focused on singular floor environment. In this paper, we present an algorithm that creates a multi-floor map using 3D point cloud. We implement localization within the multi-floor map using a LiDAR and an IMU. Our algorithm builds a multi-floor map by constructing a single-floor map using a LOAM-based algorithm, and stacking them through global registration that aligns the common sections in the map of each floor. The localization in the multi-floor map was performed by adding the height information to the NDT (Normal Distribution Transform)-based registration method. The mean error of the multi-floor map showed 0.29 m and 0.43 m errors in the x, and y-axis, respectively. In addition, the mean error of yaw was 1.00°, and the error rate of height was 0.063. The real-world test for localization was performed on the third floor. It showed the mean square error of 0.116 m, and the average differential time of 0.01 sec. This study will be able to help indoor autonomous robots to operate on multiple floors.

Accuracy evaluation of microwave water surface current meter for measurement angles in middle flow condition (전자파표면유속계의 측정 각도에 따른 평수기 유속 측정 정확도 분석)

  • Son, Geunsoo;Kim, Dongsu;Kim, Kyungdong;Kim, Jongmin
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • Streamflow discharge as a fundamental riverine quantity plays a crucial role in water resources management, thereby requiring accurate in-situ measurement. Recent advances in instrumentations for the streamflow discharge measurement has complemented or substituted classical devices and methods. Among various potential methods, surface current meter using microwave has increasingly begun to be applied not only for flood but also normal flow discharge measurement, remotely and safely enabling practitioners to measure flow velocity postulating indirect contact. With minimized field preparedness, this method facilitated and eased flood discharge measurement in the difficult in-situ conditions such as extreme flood in active ways emitting 24.125 GHz microwave without relying on natural lights. In South Korea, a rectangular shaped instrument named with Microwave Water Surface Current Meter (MWSCM) has been developed and commercially released around 2010, in which domestic agencies charging on streamflow observation shed lights on this approach regarding it as a potential substitute. Considering this brand-new device highlighted for efficient flow measurement, however, there has been few noticeable efforts in systematic and comprehensive evaluation of its performance in various measurement and riverine conditions that lead to lack in imminent and widely spreading usages in practices. This study attempted to evaluate the MWSCM in terms of instrumen's monitoring configuration particularly regarding tilt and yaw angle. In the middle of pointing the measurement spot in a given cross-section, the observation campaign inevitably poses accuracy issues related with different tilt and yaw angles of the instrument, which can be a conventionally major source of errors for this type of instrument. Focusing on the perspective of instrument configuration, the instrument was tested in a controlled outdoor river channel located in KICT River Experiment Center with a fixed flow condition of around 1 m/s flow speed with steady flow supply, 6 m of channel width, and less than 1 m of shallow flow depth, where the detailed velocity measurements with SonTek micro-ADV was used for validation. As results, less than 15 degree in tilting angle generated much higher deviation, and higher yawing angle proportionally increased coefficient of variance. Yaw angles affected accuracy in terms of measurement area.

Evaluation of usefulness for Stereotactic Partial Breast Irradiation(S-PBI) by using Surface Fiducial Marker (표면위치표지자를 적용한 정위적 부분유방방사선치료의 유용성 평가)

  • Kim, JongYeol;Jung, DongMin;Kim, SeYoung;Yoo, HyunJong;Choi, JungHoan;Park, HyoKuk;Baek, JongGeol;Lee, SangKyu;Cho, JeongHee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.99-108
    • /
    • 2021
  • Purpose: The goal of this study is to evaluate usefulness of noninvasive method instead of previous inserting Fiducial Marker Method when performing Stereotactic Partial Breast Irradiation in CyberKnife. Material and methods: For consistency of Imaging Center, we evaluated both oblique images at angle 45 and 315 acquired from 2D Simulator and CyberKnife quantitatively through dice similarity coefficient. Also, location reproducibility of Surface Fiducial Marker was analyzed from 2D Simulator, treatment plans and CyberKinfe images by using 8 Fiducial Markers made of gold attached to ATOM Phantom based on our institution's protocols. Results: The results of the estimated consistency were 0.87 and 0.9 at the oblique angle 45 and 315, respectively. For location consistency of Surface Fiducial Markers, values of horizontal vertical direction of left breast were Superior/Inferior 0.3 mm, Left/Right -0.3 mm, Anterior/Posterior 0.4 mm, and the values of rotational direction were Roll 0.3 °, Pitch 0.2 °, Yaw 0.4 °. The values of horizontal vertical direction of right breast were Superior/Inferior -0.1 mm, Left/Right -0.1 mm, Anterior/Posterior -0.1 mm, and the values of rotational direction were Roll 0.2°, Pitch 0.1°, Yaw 0.1°. Conclusions: We expect that the protocols used by Surface Fiducial Markers when performing Stereotactic Partial Breast Irradiation in CyberKnife will provide protection from pain and cut expenses for treatment and reduce treatment errors and make treatment more accurate by suggesting treatment protocols based on high consistency of Imaging Center and reproducibility of Fiducial Markers.

A Study on Mechanical Errors in Cone Beam Computed Tomography(CBCT) System (콘빔 전산화단층촬영(CBCT) 시스템에서 기계적 오류에 관한 연구)

  • Lee, Yi-Seong;Yoo, Eun-Jeong;Kim, Seung-Keun;Choi, Kyoung-Sik;Lee, Jeong-Woo;Suh, Tae-Suk;Kim, Joeng-Koo
    • Journal of radiological science and technology
    • /
    • v.36 no.2
    • /
    • pp.123-129
    • /
    • 2013
  • This study investigated the rate of setup variance by the rotating unbalance of gantry in image-guided radiation therapy. The equipments used linear accelerator(Elekta Synergy TM, UK) and a three-dimensional volume imaging mode(3D Volume View) in cone beam computed tomography(CBCT) system. 2D images obtained by rotating $360^{\circ}$and $180^{\circ}$ were reconstructed to 3D image. Catpan503 phantom and homogeneous phantom were used to measure the setup errors. Ball-bearing phantom was used to check the rotation axis of the CBCT. The volume image from CBCT using Catphan503 phantom and homogeneous phantom were analyzed and compared to images from conventional CT in the six dimensional view(X, Y, Z, Roll, Pitch, and Yaw). The variance ratio of setup error were difference in X 0.6 mm, Y 0.5 mm Z 0.5 mm when the gantry rotated $360^{\circ}$ in orthogonal coordinate. whereas rotated $180^{\circ}$, the error measured 0.9 mm, 0.2 mm, 0.3 mm in X, Y, Z respectively. In the rotating coordinates, the more increased the rotating unbalance, the more raised average ratio of setup errors. The resolution of CBCT images showed 2 level of difference in the table recommended. CBCT had a good agreement compared to each recommended values which is the mechanical safety, geometry accuracy and image quality. The rotating unbalance of gentry vary hardly in orthogonal coordinate. However, in rotating coordinate of gantry exceeded the ${\pm}1^{\circ}$ of recommended value. Therefore, when we do sophisticated radiation therapy six dimensional correction is needed.

Comparison of Two Different Immobilization Devices for Pelvic Region Radiotherapy in Tomotherapy

  • Kim, Dae Gun;Jung, James J;Cho, Kwang Hwan;Ryu, Mi Ryeong;Moon, Seong Kwon;Bae, Sun Hyun;Ahn, Jae Ouk;Jung, Jae Hong
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.250-257
    • /
    • 2016
  • The purpose of this study was to compare the patient setup errors of two different immobilization devices (Feet Fix: FF and Leg Fix: LF) for pelvic region radiotherapy in Tomotherapy. Thirty six-patients previously treated with IMRT technique were selected, and divided into two groups based on applied immobilization devices (FF versus LF). We performed a retrospective clinical analysis including the mean, systematic, random variation, 3D-error, and calculated the planning target volume (PTV) margin. In addition, a rotational error (angles, $^{\circ}$) for each patient was analyzed using the automatic image registration. The 3D-errors for the FF and the LF groups were 3.70 mm and 4.26 mm, respectively; the LF group value was 15.1% higher than in the FF group. The treatment margin in the ML, SI, and AP directions were 5.23 mm (6.08 mm), 4.64 mm (6.29 mm), 5.83 mm (8.69 mm) in the FF group (and the LF group), respectively, that the FF group was lower than in the LF group. The percentage in treatment fractions for the FF group (ant the LF group) in greater than 5 mm at ML, SI, and AP direction was 1.7% (3.6%), 3.3% (10.7%), and 5.0% (16.1%), respectively. Two different immobilization devices were affected the patient setup errors due to different fixed location in low extremity. The radiotherapy for the pelvic region by Tomotherapy should be considering variation for the rotational angles including Yaw and Pitch direction that incorrect setup error during the treatment. In addition the choice of an appropriate immobilization device is important because an unalterable rotation angle affects the setup error.

KITSAT-1/2 ANALOG SUN SENSORS-IN-ORBIT RESULTS (우리별 1, 2호 아날로그 태양 감지기의 궤도상 운용결과)

  • 장현석;김병진;임광수;성단근;최순달
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.173-180
    • /
    • 1996
  • This paper briefly describes the KITSAT-1 and KITSAT-2 spacecrafts and presents the functions, calibration procedures and in-orbit results of the KITSAT-2 analog sun sensors have been flown as an experimental payload for the future mission. We have two constraints in their design: small size and very low power consumption due to the tight mass and power budget of the spacecraft. Two one-dimensional analog sun sensors are mounted on the top facet of the KITSAT-2 spaceraft. Each has $\pm$60 degrees of view angle and they cover 210 degree field of view in total as the 30 degree view angles are overlapped. Only the relative sun angle around the Z-axis (yaw-axis) and the spin rate of the spacecraft can be achieved as the one dimensional sun sensors are used and they are aligned with the Z-axis. The calibration formulae are obtained using the fifth order line fitting algorithm for each sun sensor on the ground and they are applied to the obtained in-orbit data. ASS-1 with silicon solar cells has maximum error of 1.5 degree and ASS-2 with silicon photocells manufactured at KAIST has maximum error of 0.5 degree except near 0 degree of sun ray incident anagle where random reflection of incident sun ray is maximum in orbit. The results are presented in chapter 4. The performance of each sun sensor and the possible mounting errors are stated in chapter 5.

  • PDF

Path-following Control for Autonomous Navigation of Marine Vessels Considering Disturbances (외력을 고려한 선박의 자율운항을 위한 경로추종 제어)

  • Lee, Sang-Do
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.557-565
    • /
    • 2021
  • Path-following control is considered as one of the most fundamental skills to realize autonomous navigation of marine vessels in the ocean. This study addresses with the path-following control for a ship in which there are environmental disturbances in the directions of the surge, sway, and yaw motions. The guiding principle and back-stepping method was utilized to solve the ship's tracking problem on the reference path generated by a virtual ship. For path-following control, error dynamics is one of the most important skills, and it extends to the research fields of automatic collision avoidance and automatic berthing control. The algorithms for the guiding principles and error variables have been verified by numerical simulation. As a result, most error variables converged to zero values with the controller except for the yaw angle error. One of the most interesting results is that the tracking errors of path-following control between two ships are smaller than the existing safe passing distances considering interaction forces from near passing ships. Moreover, a trade-off between tracking performance and the ship's safety should be considered for determining the proper control parameters to prevent the destructive failure of actuators such as propellers, fins, and rudders during the path-following of marine vessels.