• 제목/요약/키워드: Yamabe invariant

검색결과 4건 처리시간 0.015초

On the Paneitz-Branson Operator in Manifolds with Negative Yamabe Constant

  • Ali, Zouaoui
    • Kyungpook Mathematical Journal
    • /
    • 제62권4호
    • /
    • pp.751-767
    • /
    • 2022
  • This paper deals with the Paneitz-Branson operator in compact Riemannian manifolds with negative Yamabe invariant. We start off by providing a new criterion for the positivity of the Paneitz-Branson operator when the Yamabe invariant of the manifold is negative. Another result stated in this paper is about the existence of a metric on a manifold of dimension 5 such that the Paneitz-Branson operator has multiple negative eigenvalues. Finally, we provide new inequalities related to the upper bound of the mean value of the Q-curvature.

T-STRUCTURE AND THE YAMABE INVARIANT

  • Sung, Chan-Young
    • 대한수학회보
    • /
    • 제49권2호
    • /
    • pp.435-443
    • /
    • 2012
  • The Yamabe invariant is a topological invariant of a smooth closed manifold, which contains information about possible scalar curvature on it. It is well-known that a product manifold $T^m{\times}B$ where $T^m$ is the m-dimensional torus, and B is a closed spin manifold with nonzero $\^{A}$-genus has zero Yamabe invariant. We generalize this to various T-structured manifolds, for example $T^m$-bundles over such B whose transition functions take values in Sp(m, $\mathbb{Z}$) (or Sp(m - 1, $\mathbb{Z}$) ${\oplus}\;{{\pm}1}$ for odd m).

YAMABE SOLITONS ON KENMOTSU MANIFOLDS

  • Hui, Shyamal Kumar;Mandal, Yadab Chandra
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.321-331
    • /
    • 2019
  • The present paper deals with a study of infinitesimal CL-transformations on Kenmotsu manifolds, whose metric is Yamabe soliton and obtained sufficient conditions for such solitons to be expanding, steady and shrinking. Among others, we find a necessary and sufficient condition of a Yamabe soliton on Kenmotsu manifold with respect to CL-connection to be Yamabe soliton on Kenmotsu manifold with respect to Levi-Civita connection. We found the necessary and sufficient condition for the Yamabe soliton structure to be invariant under Schouten-Van Kampen connection. Finally, we constructed an example of steady Yamabe soliton on 3-dimensional Kenmotsu manifolds with respect to Schouten-Van Kampen connection.

GRADIENT YAMABE SOLITONS WITH CONFORMAL VECTOR FIELD

  • Fasihi-Ramandi, Ghodratallah;Ghahremani-Gol, Hajar
    • 대한수학회논문집
    • /
    • 제36권1호
    • /
    • pp.165-171
    • /
    • 2021
  • The purpose of this paper is to investigate the geometry of complete gradient Yamabe soliton (Mn, g, f, λ) with constant scalar curvature admitting a non-homothetic conformal vector field V leaving the potential vector field invariant. We show that in such manifolds the potential function f is constant and the scalar curvature of g is determined by its soliton scalar. Considering the locally conformally flat case and conformal vector field V, without constant scalar curvature assumption, we show that g has constant curvature and determines the potential function f explicitly.