• 제목/요약/키워드: YOLO Network

검색결과 81건 처리시간 0.021초

Improving Performance of YOLO Network Using Multi-layer Overlapped Windows for Detecting Correct Position of Small Dense Objects

  • Yu, Jae-Hyoung;Han, Youngjoon;Hahn, Hernsoo
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권3호
    • /
    • pp.19-27
    • /
    • 2019
  • This paper proposes a new method using multi-layer overlapped windows to improve the performance of YOLO network which is vulnerable to detect small dense objects. In particular, the proposed method uses the YOLO Network based on the multi-layer overlapped windows to track small dense vehicles that approach from long distances. The method improves the detection performance for location and size of small vehicles. It allows crossing area of two multi-layer overlapped windows to track moving vehicles from a long distance to a short distance. And the YOLO network is optimized so that GPU computation time due to multi-layer overlapped windows should be reduced. The superiority of the proposed algorithm has been proved through various experiments using captured images from road surveillance cameras.

YOLO, EAST: 신경망 모델을 이용한 문자열 위치 검출 성능 비교 (YOLO, EAST : Comparison of Scene Text Detection Performance, Using a Neural Network Model)

  • 박찬용;임영민;정승대;조영혁;이병철;이규현;김진욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권3호
    • /
    • pp.115-124
    • /
    • 2022
  • 본 논문에서는 최근 다양한 분야에서 많이 활용되고 있는 YOLO와 EAST 신경망을 이미지 속 문자열 탐지문제에 적용해보고 이들의 성능을 비교분석 해 보았다. YOLO 신경망은 일반적으로 이미지 속 문자영역 탐지에 낮은 성능을 보인다고 알려졌으나, 실험결과 YOLOv3는 문자열 탐지에 비교적 약점을 보이지만 최근 출시된 YOLOv4와 YOLOv5의 경우 다양한 형태의 이미지 속에 있는 한글과 영문 문자열 탐지에 뛰어난 성능을 보여줌을 확인하였다. 따라서, 이들 YOLO 신경망 기반 문자열 탐지방법이 향후 문자 인식 분야에서 많이 활용될 것으로 전망한다.

A Comparative Study of Deep Learning Techniques for Alzheimer's disease Detection in Medical Radiography

  • Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
    • International Journal of Computer Science & Network Security
    • /
    • 제24권5호
    • /
    • pp.53-63
    • /
    • 2024
  • Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.

PCB 검사를 위한 YOLO 네트워크 기반의 PCB 부품 분류 알고리즘 (PCB Component Classification Algorithm Based on YOLO Network for PCB Inspection)

  • 윤형조;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제24권8호
    • /
    • pp.988-999
    • /
    • 2021
  • AOI (Automatic Optical Inspection) of PCB (Printed Circuit Board) is a very important step to guarantee the product performance. The process of registering components called teaching mode is first perform, and AOI is then carried out in a testing mode that checks defects, such as recognizing and comparing the component mounted on the PCB to the stored components. Since most of registration of the components on the PCB is done manually, it takes a lot of time and there are many problems caused by mistakes or misjudgement. In this paper, A components classifier is proposed using YOLO (You Only Look Once) v2's object detection model that can automatically register components in teaching modes to reduce dramatically time and mistakes. The network of YOLO is modified to classify small objects, and the number of anchor boxes was increased from 9 to 15 to classify various types and sizes. Experimental results show that the proposed method has a good performance with 99.86% accuracy.

객체 검출을 위한 CNN과 YOLO 성능 비교 실험 (Comparison of CNN and YOLO for Object Detection)

  • 이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.85-92
    • /
    • 2020
  • Object detection plays a critical role in the field of computer vision, and various researches have rapidly increased along with applying convolutional neural network and its modified structures since 2012. There are representative object detection algorithms, which are convolutional neural networks and YOLO. This paper presents two representative algorithm series, based on CNN and YOLO which solves the problem of CNN bounding box. We compare the performance of algorithm series in terms of accuracy, speed and cost. Compared with the latest advanced solution, YOLO v3 achieves a good trade-off between speed and accuracy.

YOLO 기반 외곽 사각형을 이용한 근접 돼지 분리 (Separation of Touching Pigs using YOLO-based Bounding Box)

  • 서지현;주미소;최윤창;이준희;정용화;박대희
    • 한국멀티미디어학회논문지
    • /
    • 제21권2호
    • /
    • pp.77-86
    • /
    • 2018
  • Although separation of touching pigs in real-time is an important issue for a 24-h pig monitoring system, it is challenging to separate accurately the touching pigs in a crowded pig room. In this study, we propose a separation method for touching pigs using the information generated from Convolutional Neural Network(CNN). Especially, we apply one of the CNN-based object detection methods(i.e., You Look Only Once, YOLO) to solve the touching objects separation problem in an active manner. First, we evaluate and select the bounding boxes generated from YOLO, and then separate touching pigs by analyzing the relations between the selected bounding boxes. Our experimental results show that the proposed method is more effective than widely-used methods for separating touching pigs, in terms of both accuracy and execution time.

다중 신경망을 이용한 객체 탐지 효율성 개선방안 (Improving Efficiency of Object Detection using Multiple Neural Networks)

  • 박대흠;임종훈;장시웅
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.154-157
    • /
    • 2022
  • 기존의 Tensorflow CNN 환경에서 Object 탐지 방식은 Tensorflow 자체적으로 Object 라벨링 작업과 탐지를 하는 방식이다. 그러나 현재 YOLO의 등장으로 이미지 객체 탐지의 효율성이 높아졌다. 그로 인하여 기존 신경망보다 더 많은 심층 레이어를 구축할 수 있으며 또한 이미지 객체 인식률을 높일 수 있다. 따라서 본 논문에서는 Darknet, YOLO를 기반으로 한 Object 탐지 시스템을 설계하고 기존에 사용하던 합성곱 신경망에 기반한 다중 레이어 구축과 학습을 수행함으로써 탐지능력과 속도를 비교, 분석하였다. 이로 인하여 본 논문에서는 Darknet의 학습을 효율적으로 이용하는 신경망 방법론을 제시하였다.

  • PDF

A method based on Multi-Convolution layers Joint and Generative Adversarial Networks for Vehicle Detection

  • Han, Guang;Su, Jinpeng;Zhang, Chengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1795-1811
    • /
    • 2019
  • In order to achieve rapid and accurate detection of vehicle objects in complex traffic conditions, we propose a novel vehicle detection method. Firstly, more contextual and small-object vehicle information can be obtained by our Joint Feature Network (JFN). Secondly, our Evolved Region Proposal Network (EPRN) generates initial anchor boxes by adding an improved version of the region proposal network in this network, and at the same time filters out a large number of false vehicle boxes by soft-Non Maximum Suppression (NMS). Then, our Mask Network (MaskN) generates an example that includes the vehicle occlusion, the generator and discriminator can learn from each other in order to further improve the vehicle object detection capability. Finally, these candidate vehicle detection boxes are optimized to obtain the final vehicle detection boxes by the Fine-Tuning Network(FTN). Through the evaluation experiment on the DETRAC benchmark dataset, we find that in terms of mAP, our method exceeds Faster-RCNN by 11.15%, YOLO by 11.88%, and EB by 1.64%. Besides, our algorithm also has achieved top2 comaring with MS-CNN, YOLO-v3, RefineNet, RetinaNet, Faster-rcnn, DSSD and YOLO-v2 of vehicle category in KITTI dataset.

엣지 컴퓨팅 환경에서 적용 가능한 딥러닝 기반 라벨 검사 시스템 구현 (Implementation of Deep Learning-based Label Inspection System Applicable to Edge Computing Environments)

  • 배주원;한병길
    • 대한임베디드공학회논문지
    • /
    • 제17권2호
    • /
    • pp.77-83
    • /
    • 2022
  • In this paper, the two-stage object detection approach is proposed to implement a deep learning-based label inspection system on edge computing environments. Since the label printed on the products during the production process contains important information related to the product, it is significantly to check the label information is correct. The proposed system uses the lightweight deep learning model that able to employ in the low-performance edge computing devices, and the two-stage object detection approach is applied to compensate for the low accuracy relatively. The proposed Two-Stage object detection approach consists of two object detection networks, Label Area Detection Network and Character Detection Network. Label Area Detection Network finds the label area in the product image, and Character Detection Network detects the words in the label area. Using this approach, we can detect characters precise even with a lightweight deep learning models. The SF-YOLO model applied in the proposed system is the YOLO-based lightweight object detection network designed for edge computing devices. This model showed up to 2 times faster processing time and a considerable improvement in accuracy, compared to other YOLO-based lightweight models such as YOLOv3-tiny and YOLOv4-tiny. Also since the amount of computation is low, it can be easily applied in edge computing environments.

YOLO 네트워크를 활용한 전이학습 기반 객체 탐지 알고리즘 (Transfer Learning-based Object Detection Algorithm Using YOLO Network)

  • 이동구;선영규;김수현;심이삭;이계산;송명남;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.219-223
    • /
    • 2020
  • 딥 러닝 기반 객체 탐지 및 영상처리 분야에서 모델의 인식률과 정확도를 보장하기 위해 다량의 데이터 확보는 필수적이다. 본 논문에서는 학습데이터가 적은 경우에도 인공지능 모델의 높은 성능을 도출하기 위해 전이학습 기반 객체탐지 알고리즘을 제안한다. 본 논문에서는 객체탐지를 위해 사전 학습된 Resnet-50 네트워크와 YOLO(You Only Look Once) 네트워크를 결합한 전이학습 네트워크를 구성하였다. 구성된 전이학습 네트워크는 Leeds Sports Pose 데이터셋의 일부를 활용하여 이미지에서 가장 넓은 영역을 차지하고 있는 사람을 탐지하는 네트워크로 학습을 진행하였다. 실험결과는 탐지율 84%, 탐지 정확도 97%를 기록하였다.