• 제목/요약/키워드: YCbCr color

검색결과 167건 처리시간 0.023초

가이드라인을 이용한 동적 손동작 인식 (Dynamic Hand Gesture Recognition using Guide Lines)

  • 김건우;이원주;전창호
    • 전자공학회논문지CI
    • /
    • 제47권5호
    • /
    • pp.1-9
    • /
    • 2010
  • 일반적으로 동적 손동작 인식을 위해서는 전처리, 손 추적, 손 모양 검출의 단계가 필요하다. 본 논문에서는 전처리와 손 모양 검출 방법을 개선함으로써 성능을 향상시킨 동적 손동작 인식 방법을 제안한다. 전처리 단계에서는 동적테이블을 이용하여 노이즈제거 성능을 높이고, YCbCr 컬러공간을 이용한 기존의 피부색 검출 방식에서 피부색의 범위를 조절할 수 있도록 하여 피부색 검출 성능을 높인다. 특히 손 모양 검출 단계에서는 가이드라인을 이용하여 동적 손동작 인식의 요소인 시작이미지(Start Image)와 정지 이미지(Stop Image)를 검출하여 동적 손동작을 인식하기 때문에 학습예제를 사용한 손동작 인식 방법에 비해 인식 속도가 빠르다는 이점이 있다. 가이드라인이란 웹캠을 통해 입력되는 손의 모양과 비교하여 검출하기 위해 화면에 출력하는 손 모양의 라인이다. 가이드라인을 이용한 동적 손동작 인식 방법의 성능을 평가하기 위해 웹캠을 사용하여 복잡한 배경과 단순한 배경으로 구분된 9가지 동영상을 대상으로 실험하였다. 그 결과 CPU 점유율이 낮고, 메모리 사용량도 적기 때문에 시스템 부하가 높은 환경에 효과적임을 알 수 있었다.

Log-polar변환과 얼굴특징추출을 이용한 크기 및 회전불변 얼굴인식 (Rotation and Scale Invariant Face Detection Using Log-polar Mapping and Face Features)

  • 고기영;김두영
    • 융합신호처리학회논문지
    • /
    • 제6권1호
    • /
    • pp.15-22
    • /
    • 2005
  • 본 논문은 CCD 칼라 영상을 이용하여 얼굴을 인식할 수 있는 방법을 제안한다. YCbCr 컬러모델에서 피부색에 대한 색상 정보와 적응적인 피부범위 확장을 통하여 얼굴후보영역을 추출하였다. 추출된 얼굴후보영역을 이용하여 곡선전개 방식의 초기곡선으로 사용하여 얼굴영역을 정확히 추출하였다. 얼굴의 특징점을 추출하기 위하여 얼굴영역에서 칼라정보를 이용한 Eye Map과 Mouth Map을 이용하였다. Log-polar변환의 중심점을 얻기 위하여 검출된 얼굴의 특징점을 이용하였다. 특징벡터를 추출하기 위하여 DCT, 웨이브렛 변환을 통하여 추출한 계수들을 이용하였다. 제안된 방법의 타당성을 검토하기 위하여 BP 학습알고리즘을 사용하는 신경망에서 얼굴인식을 수행하였다. 실험결과, 제안한 방법이 입력영상의 회전, 크기변화에 대하여 기존의 방법에 비하여 강인한 인식결과를 얻을 수 있었다.

  • PDF

Efficient Forest Fire Detection using Rule-Based Multi-color Space and Correlation Coefficient for Application in Unmanned Aerial Vehicles

  • Anh, Nguyen Duc;Van Thanh, Pham;Lap, Doan Tu;Khai, Nguyen Tuan;Van An, Tran;Tan, Tran Duc;An, Nguyen Huu;Dinh, Dang Nhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권2호
    • /
    • pp.381-404
    • /
    • 2022
  • Forest fires inflict great losses of human lives and serious damages to ecological systems. Hence, numerous fire detection methods have been proposed, one of which is fire detection based on sensors. However, these methods reveal several limitations when applied in large spaces like forests such as high cost, high level of false alarm, limited battery capacity, and other problems. In this research, we propose a novel forest fire detection method based on image processing and correlation coefficient. Firstly, two fire detection conditions are applied in RGB color space to distinguish between fire pixels and the background. Secondly, the image is converted from RGB to YCbCr color space with two fire detection conditions being applied in this color space. Finally, the correlation coefficient is used to distinguish between fires and objects with fire-like colors. Our proposed algorithm is tested and evaluated on eleven fire and non-fire videos collected from the internet and achieves up to 95.87% and 97.89% of F-score and accuracy respectively in performance evaluation.

GAN-based Color Palette Extraction System by Chroma Fine-tuning with Reinforcement Learning

  • Kim, Sanghyuk;Kang, Suk-Ju
    • Journal of Semiconductor Engineering
    • /
    • 제2권1호
    • /
    • pp.125-129
    • /
    • 2021
  • As the interest of deep learning, techniques to control the color of images in image processing field are evolving together. However, there is no clear standard for color, and it is not easy to find a way to represent only the color itself like the color-palette. In this paper, we propose a novel color palette extraction system by chroma fine-tuning with reinforcement learning. It helps to recognize the color combination to represent an input image. First, we use RGBY images to create feature maps by transferring the backbone network with well-trained model-weight which is verified at super resolution convolutional neural networks. Second, feature maps are trained to 3 fully connected layers for the color-palette generation with a generative adversarial network (GAN). Third, we use the reinforcement learning method which only changes chroma information of the GAN-output by slightly moving each Y component of YCbCr color gamut of pixel values up and down. The proposed method outperforms existing color palette extraction methods as given the accuracy of 0.9140.

QUALITY IMPROVEMENT OF COMPRESSED COLOR IMAGES USING A PROBABILISTIC APPROACH

  • Takao, Nobuteru;Haraguchi, Shun;Noda, Hideki;Niimi, Michiharu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.520-524
    • /
    • 2009
  • In compressed color images, colors are usually represented by luminance and chrominance (YCbCr) components. Considering characteristics of human vision system, chrominance (CbCr) components are generally represented more coarsely than luminance component. Aiming at possible recovery of chrominance components, we propose a model-based chrominance estimation algorithm where color images are modeled by a Markov random field (MRF). A simple MRF model is here used whose local conditional probability density function (pdf) for a color vector of a pixel is a Gaussian pdf depending on color vectors of its neighboring pixels. Chrominance components of a pixel are estimated by maximizing the conditional pdf given its luminance component and its neighboring color vectors. Experimental results show that the proposed chrominance estimation algorithm is effective for quality improvement of compressed color images such as JPEG and JPEG2000.

  • PDF

가우시안 혼합모델을 이용한 솔라셀 색상분류 (Solar Cell Classification using Gaussian Mixture Models)

  • 고진석;임재열
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.1-5
    • /
    • 2011
  • In recent years, worldwide production of solar wafers increased rapidly. Therefore, the solar wafer technology in the developed countries already has become an industry, and related industries such as solar wafer manufacturing equipment have developed rapidly. In this paper we propose the color classification method of the polycrystalline solar wafer that needed in manufacturing equipment. The solar wafer produced in the manufacturing process does not have a uniform color. Therefore, the solar wafer panels made with insensitive color uniformity will fall off the aesthetics. Gaussian mixture models (GMM) are among the most statistically mature methods for clustering and we use the Gaussian mixture models for the classification of the polycrystalline solar wafers. In addition, we compare the performance of the color feature vector from various color space for color classification. Experimental results show that the feature vector from YCbCr color space has the most efficient performance and the correct classification rate is 97.4%.

Digital Watermarking using Color Space Conversion

  • Kim, Hee-Soo;Jin-woo park;Eui-Yoon chung;Ha, Yeong-Ho
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.470-473
    • /
    • 2000
  • Digital watermarking is a technical solution to the copyright problem and is a necessary technique to protect copyright of multimedia content. Recently, there are many digital watermarking methods that deal in grey scale still images. However, only a few researchers are interested in digital watermarking fro video and color images. In this paper, we focus on digital watermarking for color images. At first, in order to embed the watermark signal in color image, we converted RGB color space to YCbCr color space which is a world-wide digital component video standard. In addition, we adopted the acceptable degree of color difference in order to keep the invisibility.

  • PDF

칼라 정보를 이용한 얼굴 영역 검출 및 Gabor Filter 에 의한 영역 검증에 관한 연구 (A Study on a Face Detection Using Color Information and Gabor Filter)

  • 한재성;이경무
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.861-864
    • /
    • 2000
  • 본 논문에서는 물체의 고유 칼라 정보 복원을 통하여 조명의 영향을 받지 않는 칼라 기반 얼굴검출 기법을 제안한다. 즉 주위 조명 영향으로부터 RGB 성분 계수를 파악하여 조명 성분에 영향을 받은 성분을 상쇄시키고, 색포화도와 밝기값 보상을 통해 고유 칼라를 복원(color recover)하는 실험을 하였고, 복원된 영상을 YCbCr 좌표계로 변환시킨 후, CbCr 각각에 대해 살색 성분이 나타내는 일정한 범위내의 부분을 검출하였다. 또한 이 진화 과정에서 생긴 잡음들을 형태학적인 모폴로지 필터를 통해 제거하였으며, 살색 후보 영역 중 같은 영역들은 레이블링하여 얼굴 후보 영역을 생성하였다. 그러나 칼라 정보만으로는 검출된 영역이 얼굴인지를 판단하기가 매우 어렵다. 그러므로 본 연구에서는 인간시각에 기반한 Gabor 필터를 사용하여, 검출된 살색 영역이 최종적으로 얼굴인지를 판별하는 효율적인 알고리즘을 제안한다.

  • PDF

Bayer 패턴의 de-mosaicing 과정에서 발생하는 색상잡음 제거를 위한 검열기반 적응적 평탄화 기법 (Adaptive Smoothing Algorithm Based on Censoring for Removing False Color Noise Caused by De-mosaicing on Bayer Pattern CFA)

  • 황성현;김채성;문지혜
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.403-406
    • /
    • 2005
  • The purpose of this paper is to propose ways to remove false color noise (FCN) generated during de-mosaicing on RGB Bayer pattern images. In case of images sensors adapting Bayer pattern color filters array (CFA), de-mosaicing is conducted to recover the RGB color data in single pixels. Here, FCN phenomena would occur where there is clearer silhouette or contrast of colors. The FCN phenomena found during de-mosaicking process appears locally in the edges inside the image and the proposed method of eliminating this is to convert RGB color space to YCbCr space to conduct smoothing process. Moreover, for edges where different colors come together, censoring based smoothing technique is proposed as a way to minimize color blurring effect.

  • PDF

계층화된 3차원 피부색 모델을 이용한 피부색 분할 (Skin Color Region Segmentation using classified 3D skin)

  • 박경미;윤가림;김영봉
    • 한국정보통신학회논문지
    • /
    • 제14권8호
    • /
    • pp.1809-1818
    • /
    • 2010
  • 피부색 영역의 검출을 위한 기존 연구들은 영상의 각 픽셀을 피부에 속하는 픽셀(피부픽셀)과 속하지 않는 픽셀(비피부픽셀)로 나누게 된다. 이때 정확한 피부색 영역을 검출하는 작업은 영상의 조명효과 및 화장에 의한 피부색 변형 등으로 매우 어려운 작업이다. 본 논문에서는 피부 영역 검출을 어렵게 하는 여러 가지 요인을 포함한 영상들로부터 효율적으로 피부영역을 검출하기 위해 계층화된 피부 모델과 컨텍스트 정보를 통합하여 피부 영역 검출의 성능을 향상시키는 방법을 제안한다. 먼저, 획득된 영상들로부터 뽑아낸 피부색 색깔 값들의 확률분포를 YCbCr칼라 공간에 만들고, 그 확률 값에 따라 피부(Skin), 피부후보(Skinness), 비피부(Non-skin)의 3계층으로 분류한 3차원 피부색 모델을 만든다. 계층화된 피부색 모델을 이용하여 각 픽셀의 피부색 여부를 결정하고, 피부후보(Skinness)색에 해당하는 경우에는 이웃 화소의 정보를 고려하여 피부색 또는 비 피부색으로 정하게 된다. 제안 방법의 사용으로 피부색이 왜곡 되었거나 피부색과 유사한 객체가 포함된 다양한 영상들에서도 효율적으로 피부 영역을 분할할 수 있었다.