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ABSTRACT

In compressed color images, colors are usually represented
by luminance and chrominance (YCbCr) components. Con-
sidering characteristics of human vision system, chromi-
nance (CbCr) components are generally represented more
coarsely than luminance component. Aiming at possible re-
covery of chrominance components, we propose a model-
based chrominance estimation algorithm where color im-
ages are modeled by a Markov random field (MRF). A sim-
ple MRF model is here used whose local conditional proba-
bility density function (pdf) for a color vector of a pixel is a
Gaussian pdf depending on color vectors of its neighboring
pixels. Chrominance components of a pixel are estimated
by maximizing the conditional pdf given its luminance com-
ponent and its neighboring color vectors. Experimental re-
sults show that the proposed chrominance estimation algo-
rithm is effective for quality improvement of compressed
color images such as JPEG and JPEG2000.

Keywords: compressed color image, chrominance estima-
tion, MRF, JPEG, JPEG2000

1. INTRODUCTION

In compressed color images, colors are usually represented
by luminance and chrominance (YCbCr) components in-
stead of red, green and blue (RGB) components. Then con-
sidering characteristics of human vision system, chromi-
nance (CbCr) components are generally represented more
coarsely than luminance component. For example, in JPEG
compression [1], Cb and Cr components are usually down-
sampled by a factor of two at its compression stage, and
afterward the downsampled chrominance components are
interpolated at its decompression stage. Furthermore, at
quantization step of discrete cosine transform (DCT) coef-
ficients, DCT coefficients of chrominance components are
generally quantized more coarsely than those of luminance
components.

For interpolation of downsampled chrominance compo-
nents, several methods such as bi-linear interpolation and
bi-cubic interpolation are usually used. However, such a
conventional interpolation cannot recover high frequency
components lost by downsampling and could cause color
blurring in edges of a color image. To prevent such arti-
facts, Sugita et al. [2] proposed a chrominance interpolation

method using information on luminance component which
is not downsampled.

The interpolation aims to recover only resolution of chromi-
nance components lost by downsampling. Alternatively, we
aim to recover not only resolution lost by downsampling
but also precision lost by a coarser quantization, if possi-
ble. Aiming at such recovery of chrominance components,
we propose a model-based method where color images are
modeled by a Markov random field (MRF). A simple MRF
model is here used whose local conditional probability den-
sity function (pdf) for a color vector of a pixel is a Gaussian
pdf depending on color vectors of its neighboring pixels.
Chrominance components of a pixel are estimated by max-
imizing the conditional pdf given its luminance component
and its neighboring color vectors. The estimation is car-
ried out iteratively, and chrominance components derived
from a given compressed color image are used as initial
values for the iterative estimation. If chrominance compo-
nents are downsampled, interpolated chrominance compo-
nents are used as the initial values. The proposed chromi-
nance estimation algorithm has a structure that chrominance
components are estimated considering luminance compo-
nent represented with higher resolution and precision, and
therefore we can expect a better recovery of them.

The rest of this paper is organized as follows. In Sec-
tion 2, after a brief review of MRF, a color image model
used in this paper is described. In Section 3, the proposed
chrominance estimation algorithm is described. Then after
implementation details are given in Section 4, experimental
results are given in Section 5. Conclusions are addressed in
Section 6.

2. COLOR IMAGE MODELING BY MARKOV
RANDOM FIELD

2.1 Markov Random Field

Let L = {(i, j); 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} denote a
finite set of sites of an N1 × N2 rectangular lattice. Let
ηij ⊂ L denote the (i, j) pixel’s neighborhood of a random
field XL 1 defined on L. Let Cij denote the set of cliques
C associated with ηij which contains the (i, j) pixel, i.e.,

1In this paper, xA and f(xA) denote the set {xa1 , . . . , xal} and
the multivariable function f(xa1 , . . . , xal ) respectively, where A =
{a1, . . . , al}.
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(i, j) ∈ Cij . For example, in the first-order neighborhood,
ηij = {(i, j + 1), (i, j − 1), (i + 1, j), (i− 1, j)} and Cij =
{{(i, j)}, {(i, j), (i, j +1)}, {(i, j), (i, j − 1)}, {(i, j), (i+
1, j)}, {(i, j), (i − 1, j)}} which consists of one singleton
and four doubleton cliques. Let the random field XL =
{Xij ; (i, j) ∈ L} be a Markov random field (MRF) defined
on L with Xijs taking values from a common local state
space QX . It is well known that an MRF is completely de-
scribed by a Gibbs distribution

p(xL) =
1

ZX
exp{−U(xL)}, (1)

where xL is a realization of XL from the configuration space
ΩX = QN1×N2

X and

U(xL) =
∑

(i,j)∈L

∑
C∈Cij

U(xC) (2)

is the global energy function whereas U(xC) is the clique
energy function and

ZX =
∑

xL∈ΩX

exp{−U(xL)} (3)

is the partition function. For details on MRFs and related
concepts such as the neighborhoods and cliques, see Ref.
[3].

2.2 A Color Image Model Using Gaussian MRF in YCbCr
Space

Let xij = (yij , c
b
ij , c

r
ij)

T denote a color vector at (i, j) pixel
in YCbCr space, where yij is a luminance component and
cb
ij and cr

ij are two chrominance components. Let cij =
(cb

ij , c
r
ij)

T be a chrominance vector at (i, j) pixel. A color
image can be considered as a realization xL = {xij ; (i, j) ∈
L} of a random field XL = {Xij ; (i, j) ∈ L}, where
xij = (yij , c

b
ij , c

r
ij)

T . Color images are here assumed to
be modeled by a Gaussian MRF (GMRF) characterized by
the following local conditional pdf:

p(xij | xηij
) =

1
(2π)3/2|Σ|1/2

· exp{−1
2
(xij − x̄ηij

)T Σ−1(xij − x̄ηij
)}, (4)

x̄ηij
=

1
|N |

∑
τ∈N

xij+τ . (5)

Here x̄ηij
is the mean of neighboring pixels’ color vectors

xηij
= {xij+τ , τ ∈ N}, where N denotes the neighbor-

hood of (0, 0) pixel. For example, N = {(0, 1), (0,−1),
(1, 0), (−1, 0)} for the first-order neighborhood, and if τ =
(0, 1), xij+τ = xi,j+1. Σ is the covariance matrix of xij −
x̄ηij

.

3. ESTIMATION OF CHROMINANCE
COMPONENTS

A chrominance estimation algorithm derived in this section
is the same as shown in [4]. However, it is here simply

derived using Besag’s pseudo-likelihood function [5]. Let
cL = {cij ; (i, j) ∈ L} and yL = {yij ; (i, j) ∈ L} denote
a chrominance image and a luminance image, respectively,
and both images constitute a color image xL. Our aim is to
estimate a chrominance image while keeping a luminance
image unchanged and the estimate ĉL can be described as

ĉL = arg max
cL

p(xL). (6)

Note that it is practically impossible to find ĉL since the
search space over all possible configurations of cL is huge.
To overcome this difficulty, we use the pseudo-likelihood
function proposed by Besag [5] and approximate p(xL) as

p(xL) �
∏

(i,j)∈L
p(xij | xηij

). (7)

Using the local conditional pdf p(xij | xηij
), the chromi-

nance vector cij in xij can be estimated as

ĉij = arg max
cij

p(xij | xηij
). (8)

Note that only chrominance components are to be estimated
since they are usually inferior to luminance component in
quality.

The solution of (8) for the GMRF is explicitly described
as follows. Let the covariance matrix in the GMRF shown

in (4), Σ =

⎛
⎝ σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎞
⎠ =

(
σy Σyc

Σcy Σc

)
,

where σy = σ11, Σc =
(

σ22 σ23

σ32 σ33

)
, and Σyc =

(σ12, σ13) = ΣT
cy. The GMRF p(xij | xηij

) in (4) can
be decomposed as

p(xij | xηij
) = p(yij | yηij

)p(cij | yij ,xηij
), (9)

p(yij | yηij
) =

1

(2π)1/2σ
1/2
y

· exp{− 1
2σy

(yij − ȳηij
)2}, (10)

p(cij | yij ,xηij
) =

1
(2π)|Σc|y|1/2

· exp{−1
2
(cij − mc|y)T Σ−1

c|y(cij − mc|y)}, (11)

where

ȳηij
=

1
|N |

∑
τ∈N

yij+τ , (12)

mc|y = c̄ηij
+ Σcyσ−1

y (yij − ȳηij
), (13)

c̄ηij
=

1
|N |

∑
τ∈N

cij+τ , (14)

Σc|y = Σc − Σcyσ−1
y Σyc. (15)

Considering that the maximum of (11) and then the maxi-
mum of (9) is derived at cij = mc|y, the estimate of cij , ĉij

in (8) is derived as

ĉij = c̄ηij
+ Σcyσ−1

y (yij − ȳηij
). (16)
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Note that in order to obtain ĉij for (i, j) pixel, its neigh-
boring chrominance vectors cηij

should be given. Since
such a problem can be solved iteratively as is popular in
numerical analysis, we rewrite Eq. (16) as

c(p+1)
ij = c̄(p)

ηij
+ Σcyσ−1

y (yij − ȳηij
), (17)

where

c̄(p)
ηij

=
1

|N |
∑
τ∈N

c(p)
ij+τ , (18)

and p represents the pth iteration. Chrominance components
derived from a given compressed color image are used as
initial values c(0)

ij s in this iterative estimation. If chromi-
nance components are downsampled, interpolated chromi-
nance components are used as the initial values.

4. IMPLEMENTATION DETAILS

In the calculation of each component of x̄ηij
in (5), i.e.,

ȳηij
in (12) and c̄ηij

in (14), we here used the third-order
neighborhood2. However, if at least one of three compo-
nents in xij+τ is far from the corresponding component in
xij , xij+τ was excluded from the calculation. In the fol-
lowing experiments, the used conditions for exclusion were
|yij+τ − yij | > 0.5s (s is the standard deviation of lumi-
nance values) for luminance component, or |cb

ij+τ − cb
ij | >

10 or |cr
ij+τ − cr

ij | > 10 for chrominance components.
Furthermore, to prevent an excessive change by the it-

erative estimation in (17), the following intermediate val-
ues (c(p+1)

ij )′ between successive estimates c(p)
ij and c(p+1)

ij

were used instead of c(p+1)
ij :

(cb(p+1)
ij )′ = wbc

b(p+1)
ij + (1 − wb)cb(p)

ij , (19)

(cr(p+1)
ij )′ = wrc

r(p+1)
ij + (1 − wr)cr(p)

ij , (20)

where

wb = exp{−|cb(p+1)
ij − c

b(p)
ij |

10
}, (21)

wr = exp{−|cr(p+1)
ij − c

r(p)
ij |

10
}. (22)

In the following experiments, the iterative procedure in
(17) was stopped at only one iteration. The covariance ma-
trix Σ in (4) for each image was computed using each given
compressed image.

5. EXPERIMENTAL RESULTS

Experiments were carried out using four standard color im-
ages (Lena, Milkdrop, Peppers, Mandrill). These images
are 256 × 256 pixels in size and 24 bit per pixel (bpp) full

2For the third-order neighborhood, N =
{(0, 1), (0,−1), (1, 0), (−1, 0), (1, 1), (−1,−1), (1,−1), (−1, 1),
(0, 2), (0,−2), (2, 0), (−2, 0)}

Table 1: PSNR values for JPEG compressed images (qual-
ity factor=80) with chrominance downsampling and those
improved by the proposed method.

PSNR(dB)
image bpp JPEG proposed
Lena 1.65 33.18 33.55

Milkdrop 1.35 33.06 33.48
Peppers 1.79 32.77 33.13
Mandrill 2.71 27.87 27.95

Table 2: PSNR values for JPEG compressed images (quality
factor=80) without chrominance downsampling and those
improved by the proposed method.

PSNR(dB)
image bpp JPEG proposed
Lena 2.13 34.79 35.28

Milkdrop 1.83 36.31 37.11
Peppers 2.38 35.57 36.12
Mandrill 3.56 29.14 29.33

color images. The proposed chrominance estimation algo-
rithm was applied to JPEG compressed color images and
JPEG2000 compressed ones.

Experimental results for JPEG compressed color images
with and without chrominance downsampling are shown in
Fig. 1 and Fig. 2, respectively. In these figures, PSNR
values and CIELAB distances are plotted for four different
quality factor (qf) images: qf=60, 70, 80, and 90, and the
leftmost and the rightmost point of each line correspond to
qf=60 and qf=90, respectively. Larger quality factor im-
age has higher quality, i.e., larger PSNR value and smaller
CIELAB distance with larger bit rate (larger file size). From
Fig. 1 and Fig. 2, it is seen that the proposed chromi-
nance estimation algorithm is effective to improve quality
of JPEG color images compressed both with and without
chrominance downsampling. Additionally, Table 1 and Ta-
ble 2 show quality improvement in PSNR value for JPEG
compressed images (quality factor=80) with and without
chrominance downsampling, respectively. It is seen that
quality improvement for JPEG compressed images without
downsampling is more significant than for those with down-
sampling.

Table 3: PSNR values for JPEG2000 compressed images
(bpp=1.0) without chrominance downsampling and those
improved by the proposed method.

PSNR(dB)
image JPEG2000 proposed
Lena 33.62 33.88

Milkdrop 36.49 36.74
Peppers 33.39 33.62
Mandrill 25.54 25.59
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Fig. 1: Experimental results for JPEG compressed four color images with chrominance downsampling. Performance is
measured by (a) PSNR and (b) CIELAB distance.
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Fig. 2: Experimental results for JPEG compressed four color images without chrominance downsampling. Performance is
measured by (a) PSNR and (b) CIELAB distance.

Experimental results for JPEG2000 compressed color
images without chrominance downsampling are shown in
Fig. 3. In this figure, PSNR values and CIELAB distances
are plotted for five different bpp images: bpp=0.25, 0.5,
1.0, 1.5 and 2.0. Additionally, Table 3 shows quality im-
provement in PSNR value for JPEG2000 compressed im-
ages (bpp=1.0) without chrominance downsampling. It is
seen that the proposed method is effective even for JPEG2000
compressed images.

6. CONCLUSIONS

This paper presented a model-based chrominance estima-
tion algorithm in order to recover coarsely represented chromi-
nance components in compressed color images. A simple
MRF model was here used as a color image model, whose
local conditional pdf for a color vector of a pixel is a Gaus-
sian pdf depending on color vectors of its neighboring pix-
els. Chrominance components of a pixel were estimated by
maximizing the conditional pdf given its luminance com-
ponent and its neighboring color vectors. The estimation
was carried out iteratively, and chrominance components

derived from a given compressed color image were used as
initial values for the iterative estimation. Experimental re-
sults show that the proposed chrominance estimation algo-
rithm is effective to improve quality of JPEG color images
compressed both with and without chrominance downsam-
pling. Furthermore, it is shown that the proposed algorithm
is effective even for JPEG2000 compressed color images.
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