• Title/Summary/Keyword: Y-capacitors

Search Result 1,424, Processing Time 0.026 seconds

Temperature Dependence of Matching Characteristics of MIM Capacitor (MIM 커패시터에서의 정합특성의 온도에 대한 의존성)

  • Jang, Jae-Hyung;Kwon, Hyuk-Min;Kwak, Ho-Young;Kwon, Sung-Kyu;Hwang, Seon-Man;Sung, Seung-Yong;Shin, Jong-Kwan;Lee, Hi-Deok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.61-66
    • /
    • 2013
  • In this paper, temperature dependence of matching characteristics of $Si_3N_4$ MIM capacitor was analyzed in depth. The matching characteristics becomes worse as the temperature increases. That is, the matching coefficient of $Si_3N_4$ MIM capacitor at $25^{\circ}C$, $75^{\circ}C$, and $125^{\circ}C$ was 0.5870, 0.6151, and $0.7861%{\mu}m$, respectively. This phenomena is believed to be due to the reduction of the carrier mobility and the increase of the charge concentration of the inner capacitor at greater temperature. Therefore, the analysis of the matching characteristics of $Si_3N_4$ MIM capacitors at high temperatures is essential for application to analog and SoC (System on Chip) circuit.

A Compact Integrated RF Transceiver Module for 2.4 GHz Band Using LTCC Technology (LTCC 기술을 적용한 집적화된 2.4 GHz 대역 무선 송수신 모듈 구현)

  • Kim, Dong-Ho;Kim, Dong-Su;Ryu, Jong-In;Kim, Jun-Chul;Park, Chong-Dae;Park, Jong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.154-161
    • /
    • 2011
  • This paper presents a compact integrated transceiver module for 2.4 GHz band applications using Low Temperature Co-fired Ceramic(LTCC) technology. The implemented transceiver module is divided into an RF Front-End Module (FEM) part and a transceiver IC chip part. The RF FEM part except an SPDT switch and DC block capacitors is fully embedded in the LTCC substrate. The fabricated RF FEM has 8 pattern layers and it occupies less than $3.3\;mm{\times}5.2\;mm{\times}0.4\;mm$. The measured results of the implemented RF FEM are in good agreement with the simulated results. The transceiver IC chip part consists of signal line, power line and transceiver IC for 2.4 GHz band communication system. The fabricated transceiver module has 9 layers including three inner grounds and it occupies less than $12\;mm{\times}8.0\;mm{\times}1.1\;mm$. The implemented transceiver module provides an output power of 18.1 dBm and a sensitivity of -85 dBm.

A Case of Occupational Hypersensitivity Pneumonitis Associated with Trichloroethylene

  • Jae, Young;Hwang, Eu Dong;Leem, Ah Young;Kang, Beo Deul;Chang, Soo Yun;Kim, Ho Keun;Park, In Kyu;Kim, Song Yee;Kim, Eun Young;Jung, Ji Ye;Kang, Young Ae;Park, Moo Suk;Kim, Young Sam;Kim, Se Kyu;Chang, Joon;Chung, Kyung Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.76 no.2
    • /
    • pp.75-79
    • /
    • 2014
  • Trichloroethylene (TCE) is a toxic chemical commonly used as a degreasing agent, and it is usually found in a colorless or blue liquid form. TCE has a sweet, chloroform-like odor, and this volatile chlorinated organic chemical can cause toxic hepatitis, neurophysiological disorders, skin disorders, and hypersensitivity syndromes. However, the hypersensitivity pneumonitis (HP) attributed to TCE has rarely been reported. We hereby describe a case of HP associated with TCE in a 29-year-old man who was employed as a lead welder at a computer repair center. He was installing the capacitors on computer chip boards and had been wiped down with TCE. He was admitted to our hospital with complaints of dry coughs, night sweats, and weight losses for the past two months. HP due to TCE exposure was being suspected due to his occupational history, and the results of a video-associated thoracoscopic biopsy confirmed the suspicions. Symptoms have resolved after the steroid pulse therapy and his occupational change. TCE should be taken into consideration as a potential trigger of HP. Early recognition and avoidance of the TCE exposure in the future is important for the treatment of TCE induced HP.

Fabrication process of embedded passive components in MCM-D (MCM-D 기판 내장형 수동소자 제조공정)

  • 주철원;이영민;이상복;현석봉;박성수;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.1-7
    • /
    • 1999
  • We developed Fabrication process of embedded passive components in MCM-D substrate. The proposed MCM-D substrate is based on Cu/photosensitive BCB multilayer. The substrate used is Si wafer and Ti/cu metallization is used to form the interconnect layer. Interconnect layers are formed with 1000$\AA$ Ti/3000$\AA$ Cu by sputtering method and 3$\mu\textrm{m}$ Cu by electrical plating method. In order to form the vias in photosensitive BCB layer, the process of BCB and plasma etch using $C_2F_6$ gas were evaluated. The MCM-D substrate is composed of 5 dielectric layers and 4 interconnect layers. Embedded resistors are made with NiCr and implemented on the $2^{nd}$ dielectric layer. The sheet resistance of NiCr is controlled to be about 21 $\Omega$/sq at the thickness of 600$\AA$. The multi-turn sprial inductors are designed in coplanar fashion on the $4^{th}$ interconnect layer with an underpass from the center to outside using the lower $3^{rd}$ interconnect layer. Capacitors are designed and realized between $1^{st}$ interconnect layer and $2^{nd}$ interconnect layer. An important issue in capacitor is the accurate determination of the dielectric thickness. We use the 900$\AA$ thickness of PECVD silicon nitride film as dielectric. Capacitance per unit area is about 88nF/$\textrm {cm}^2$at the thickness of 900$\AA$. The advantage of this integration process is the compatibility with the conventional semiconductor process due to low temperature PECVD silicon nitride process and thermal evaporation NiCr process.

  • PDF

Implementation of Small Size Dual Band PAM using LTCC Substrates (LTCC를 이용한 Small Size Dual Band PAM의 구현)

  • Shin, Yong-Kil;Chung, Hyun-Chul;Lee, Joon-Geun;Kim, Dong-Su;Yoo, Jo-Shua;Yoo, Myong-Jae;Park, Seong-Dae;Lee, Woo-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.357-358
    • /
    • 2005
  • Compact power amplifier modules (PAM) for WCDMA/KPCS and GSM/WCDMA dual-band applications based on multilayer low temperature co-fired ceramic (LTCC) substrates are presented in this paper. The proposed modules are composed of an InGaP/GaAs HBT PAs on top of the LTCC substrates and passive components such as RF chokes and capacitors which are embedded in the substrates. The overall size of the modules is less than 6mm $\times$ 6mm $\times$ 0.8mm. The measured result shows that the PAM delivers a power of 28 dBm with a power added efficiency (PAE) of more than 30 % at KPCS band. The adjacent-channel power ratio (ACPR) at 1.25-MHz and 2.25-MHz offset is -44dBc/30kHz and -60dBc/30kHz, respectively, at 28-dBm output power. Also, the PAM for WCDMA band exhibits an output power of 27 dBm and 32-dB gain at 1.95 GHz with a 3.4-V supply. The adjacent-channel leakage ratio (ACLR) at 5-MHz and 10-MHz offset is -37.5dBc/3.84MHz and -48dBc/3.84MHz, respectively. The measured result of the GSM PAM shows an output power of 33.4 dBm and a power gain of 30.4 dB at 900MHz with a 3.5V supply. The corresponding power added efficiency (PAE) is more than 52.6 %.

  • PDF

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

Growth and electrical properties of $MgTiO_3$ thin films ($MgTiO_3$산화물 박막의 성장 및 전기적 특성 연구)

  • 강신충;임왕규;안순홍;노용한;이재찬
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.227-232
    • /
    • 2000
  • $MgTiO_3$thin films have been grown on various substrates by pulsed laser deposition (PLD) to investigate the application for microwave dielectrics and optical devices. Epitaxial $MgTiO_3$thin films were obtained on sapphire (c-plane$A1_2O_3$$MgTiO_3$thin films deposited on $SiO_2/Si$ and platinized silicon ($Pt/Ti/SiO_2/Si$) substrates were highly oriented. $MgTiO_3$thin films grown on sapphire were transparent in the visible and had a sharp absorption edge about 290 nm. These $MgTiO_3$thin films had extremely fine feature of surface morphology, i.e., rms roughness of 0.87 nm, which was examined by AFM. We have investigated the dielectric properties of the $MgTiO_3$thin films in $MIM(Pt/MgTiO_3/Pt)$ capacitors. Dielectric constant and loss of $MgTiO_3$thin films deposited by PLD were about 24 and 1.5% at 1 MHz, respectively. These $MgTiO_3$thin films also exhibited little dielectric dispersion.

  • PDF

T$a_2O_5$Dielectric Thin Films by Thermal Oxidation and PECVD (열산화법 및 PECVD 법에 의한 T$a_2O_5$ 유전 박막)

  • Mun, Hwan-Seong;Lee, Jae-Seok;Lee, Jae-Seok;Lee, Jae-Seok;Yang, Seung-Gi;Lee, Jae-hak;Park, Hyung-ho;Park, Jong-wan
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.353-359
    • /
    • 1992
  • Thermal oxidation and plasma enhanced chemical vapor deposition of tantalum oxide thin films on p-type (100) Si substrates were studied to examine the dielectric nature of T$a_2O_5$ as a Al/T$a_2O_5$/p-Si capacitor. Microstructure and dielectric properties of the capacitors were investigated by XRD, AES, high frequency C-V analyzer, I-V meter and TEM. XRD analysis showed that the structure of T$a_2O_5$ films were amorphous, but the films were crystallized to hexagonal $\delta$-T$a_2O_5$ by 65$0^{\circ}C$ thermal oxidation treatment. It was found that the stoichiometry of the films was more or less close to 2 : 5. Leakage current density and relative dielectric constant of thermal oxidation T$a_2O_5$ film at 60$0^{\circ}C$ was 5.0${ imes}10^{-6}$/A/c$m^2 and 31.5, respectively. In the case of PECVD T$a_2O_5$film deposited at 0.47W/c$m^2 they were 2.5${ imes}10^{-5}$/A/$ extrm{cm}^2$ and 24.0, respectively. The morphology of the films and interfaces were investigated by TEM.

  • PDF

A SOC Coefficient Factor Calibration Method to improve accuracy Of The Lithium Battery Equivalence Model (리튬 배터리 등가모델의 정확도 개선을 위한 SOC 계수 보정법)

  • Lee, Dae-Gun;Jung, Won-Jae;Jang, Jong-Eun;Park, Jun-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.99-107
    • /
    • 2017
  • This paper proposes a battery model coefficient correction method for improving the accuracy of existing lithium battery equivalent models. BMS(battery management system) has been researched and developed to minimize shortening of battery life by keeping SOC(state of charge) and state of charge of lithium battery used in various industrial fields such as EV. However, the cell balancing operation based on the battery cell voltage can not follow the SOC change due to the internal resistance and the capacitor. Various battery equivalent models have been studied for estimation of battery SOC according to the internal resistance of the battery and capacitors. However, it is difficult to apply the same to all the batteries, and it tis difficult to estimate the battery state in the transient state. The existing battery electrical equivalent model study simulates charging and discharging dynamic characteristics of one kind of battery with error rate of 5~10% and it is not suitable to apply to actual battery having different electric characteristics. Therefore, this paper proposes a battery model coefficient correction algorithm that is suitable for real battery operating environments with different models and capacities, and can simulate dynamic characteristics with an error rate of less than 5%. To verify proposed battery model coefficient calibration method, a lithium battery of 3.7V rated voltage, 280 mAh, 1600 mAh capacity used, and a two stage RC tank model was used as an electrical equivalent model of a lithium battery. The battery charge/discharge test and model verification were performed using four C-rate of 0.25C, 0.5C, 0.75C, and 1C. The proposed battery model coefficient correction algorithm was applied to two battery models, The error rate of the discharge characteristics and the transient state characteristics is 2.13% at the maximum.

Electrical Characteristics of Pt/SBT/${Ta_2}{O_5}/Si$ Structure for Non-Volatile Memory Device (비휘발성 메모리를 위한 Pt/SBT/${Ta_2}{O_5}/Si$ 구조의 전기적 특성에 관한 연구)

  • Park, Geon-Sang;Choe, Hun-Sang;Choe, In-Hun
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.199-203
    • /
    • 2000
  • $Ta_2_O5$ and $Sr_0.8Bi_2.4Ta_2O_9$ films were deposited on p-type Si(100) substrates by a rf-magnetron sputtering and the metal organic decomposition (MOD), respectively.The electrical characteristics of the $Pt/SBT/Ta_2O_5/Si$ structure were obtained as the functions of $O_2$ gas flow ratio during the $Ta_2_O5$ sputtering and $Ta_2_O5$ thickness. And to certify the role of $Ta_2_O5$ as a buffer layer, the electrical characteristics of $Pt/SBT/Ta_2O_5/Si$ were compared. $Pt/SBT/Ta_2O_5/Si$ capacitor with 20% $O_2$ gas flow ratio during the $Ta_2_O5$ sputtering did now show typical C-V curve of metal/ferroelectric/insulator/semiconductor (MFIS) structure. The capacitor with 20% $O_2$ gas flow ratio during the $Ta_2_O5$ sputtering had the largest memory window. And the memory window was decreased as the $Ta_2_O5$ gas flow ratio during the $Ta_2_O5$ sputtering was increased to 40%, 60%. In the C-V characteristics of the $Pt/SBT/Ta_2O_5/Si$ capacitors with the different $Ta_2_O5$ thickness, the capacitor with 26nm thickness of $Ta_2_O5$ had the largest memory window. The C-V and leakage current characteristics of the Pt/SBT/Si structure were worse than those of $Pt/SBT/Ta_2O_5/Si$ structure. These results and Auger electron spectroscopy (AES) measurement showed that $Ta_2_O5$ films as a buffer layer tool a role to prevent from the formation of intermediate phase and interdiffusion between SBT and Si.

  • PDF