• 제목/요약/키워드: Y-27632

검색결과 31건 처리시간 0.019초

Reactive Oxygen Species are Involved in Y-27632-induced Neurite Outgrowth in PC12 Cells

  • Park, So Yeong;Moon, Seong Ah;An, Jeong Mi;Kim, Du sik;Seo, Jeong Taeg
    • International Journal of Oral Biology
    • /
    • 제41권4호
    • /
    • pp.231-236
    • /
    • 2016
  • Inhibition of Rho-associated coiled coil-containing kinase (ROCK) has been reported to promote differentiation of neuronal cells. Here, we examined the effect of Y-27632, a ROCK inhibitor, on the outgrowth of neurites in PC12 cells. Y-27632 caused a rapid induction of neurite outgrowth in PC12 cells in a time-dependent manner. The neurite outgrowth, triggered by Y-27632, was accompanied by Rac1 activation, and was attenuated by Rac1 inhibitor NSC23766, in a concentration-dependent manner. Y-27632 also induced an increase in the production of reactive oxygen species (ROS). Pretreatment with N-acetylcysteine, an ROS scavenger, inhibited the ROS generation and neurite outgrowth in response to Y-27632. These results indicate that the activation of Rac1 and the generation of ROS contribute to the neurite outgrowth triggered by Y-27632 in PC12 cells.

ROCK 억제제를 통한 사람 치유두 조직 유래 단일 사람 유도만능줄기세포의 생존성 향상 (Improvement of Cell Viability Using a Rho-associated Protein Kinase (ROCK) Inhibitor in Human Dental Papilla derived Single-induced Pluripotent Stem Cells)

  • 심유진;강영훈;김현지;김미정;이현정;손영범;이성호;전병균
    • 생명과학회지
    • /
    • 제29권8호
    • /
    • pp.895-903
    • /
    • 2019
  • 이 연구는 단일 세포로 분리된 유도만능줄기세포(induced pluripotent stem cells, iPSCs)에 anoikis 세포사멸을 억제할 수 있는 Rho-associated protein kinase (ROCK)의 억제제를 처리하여 iPSCs의 세포 생존성을 향상하고자 하였다. Episomal plasmid 방법으로 확립된 iPSCs를 단일세포로 분리한 후, ROCK 억제제 Y-27632 dihydrochloride (Y-27632)를 0 uM, 0.5 uM, 1 uM, 2.5 uM, 5 uM, 7.5 uM 및 10 uM 농도별로 5주일 동안 각각 처리하였을 때, 5 uM 이상의 농도에서 세포의 생존율이 유의적으로 향상되었고, 10 uM의 Y-27632을 0일, 1일, 2일, 3일, 4일 및 5일 동안 처리하였을 때, Y-27632의 노출 기간이 길어질수록 세포의 생존율이 유의적으로 향상되는 것을 관찰하였다. 그러나, Y-27632의 노출 후, iPSCs의 형태학적 분화가 관찰되어 10 uM의 Y-27632에서 5일 동안 iPSCs에 처리 한 후, 줄기세포학적인 특성을 비교 조사하였다. 우선, octamer-binding transcription factor 4 (OCT-4), homeobox protein NANOG (NONOG) 및 SRY-box 2 (SOX-2) 줄기세포 특이 유전자의 발현은 Y-27632를 처리한 실험군은 Y-27632를 처리하지 않은 대조군에서 서로 유의적인 차이를 나타내지 않았다. 또한, Y-27632를 처리한 실험군은 Y-27632를 처리하지 않은 대조군과 비교하여 telomerase 활성과 이것의 활성과 관련된 telomerase reverse transcriptase (TERT) 및 telomerase RNA component (TERC)의 유전자 발현에는 유의적인 차이가 없었다. 이상의 결과로 보아, iPSCs에 Y-27632를 처리하였을 때, iPSCs의 줄기세포의 특정을 유지하면서 anoikis에 의한 세포사멸을 감소시켜 세포 생존율이 증가한다는 것을 알 수 있었다.

A ROCK Inhibitor Blocks the Inhibitory Effect of Chondroitin Sulfate Proteoglycan on Morphological Changes of Mesenchymal Stromal/Stem Cells into Neuron-Like Cells

  • Lim, Hee-Suk;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • 제21권6호
    • /
    • pp.447-453
    • /
    • 2013
  • Chondroitin sulfate proteoglycan (CSPG) inhibits neurite outgrowth of various neuronal cell types, and CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK pathway. Mesenchymal stromal/stem cells (MSCs) have the potential to differentiate into neuron-like cells under specific conditions and have been shown to differentiate into neuron-like cells by co-treatment with the ROCK inhibitor Y27632 and the hypoxia condition mimicking agent $CoCl_2$. In this study, we addressed the hypothesis that a ROCK inhibitor might be beneficial to regenerate neurons during stem cell therapy by preventing transplanted MSCs from inhibition by CSPG in damaged tissues. Indeed, dose-dependent inhibition by CSPG pretreatment was observed during morphological changes of Wharton's jelly-derived MSCs (WJ-MSCs) induced by Y27632 alone. The formation of neurite-like structures was significantly inhibited when WJ-MSCs were pre-treated with CSPG before induction under Y27632 plus $CoCl_2$ conditions, and pretreatment with a protein kinase C inhibitor reversed such inhibition. However, CSPG treatment resulted in no significant inhibition of the WJ-MSC morphological changes into neuron-like cells after initiating induction by Y27632 plus $CoCl_2$. No marked changes were detected in expression levels of neuronal markers induced by Y27632 plus $CoCl_2$ upon CSPG treatment. CSPG also blocked the morphological changes of human bone marrow-derived MSCs into neuron-like cells under other neuronal induction condition without the ROCK inhibitor, and Y27632 pre-treatment blocked the inhibitory effect of CSPG. These results suggest that a ROCK inhibitor can be efficiently used in stem cell therapy for neuronal induction by avoiding hindrance from CSPG.

Rho-associated Kinase is Involved in Preimplantation Development and Embryonic Compaction in Pigs

  • Son, Myeong-Ju;Park, Jin-Mo;Min, Sung-Hun;Park, Hum-Dai;Koo, Deog-Bon
    • 한국수정란이식학회지
    • /
    • 제25권2호
    • /
    • pp.103-110
    • /
    • 2010
  • The first morphogenetic event of preimplantation development, compaction, was required efficient production of porcine embryos in vitro. Compaction of the porcine embryo, which takes place at post 4-cell stage, is dependent upon the adhesion molecule E-cadherin. The E-cadherin through ${\beta}$-catenin contributes to stable cell-cell adhesion. Rho-associated kinase (ROCK) signaling was found to support the integrity of E-cadherin based cell contacts. In this study, we traced the effects of ROCK-1 on early embryonic development and structural integrity of blastocysts in pigs. Then, in order to gain new insights into the process of compaction, we also examined whether ROCK-1 signaling is involved in the regulation of the compaction mediated by E-cadherin of cellular adhesion molecules. As a result, real-time RT-PCR analysis showed that the expression of ROCK-1 mRNA was presented throughout porcine preimplantation stages, but not expressed as consistent levels. Thus, we investigated the blastocyst formation of porcine embryos treated with LPA and Y27632. Blastocysts formation and their qualities in LPA treated group increased significantly compared to those in the Y27632-treated group (p < 0.05). Then, to determine whether ROCK-1 associates embryonic compaction, we explored the effect of activator and/or inhibitor of ROCK-1 on compaction of embryos in pigs. The rate of compacted morula in LPA treated group was increased compared to that in the Y27632-treated group (39.7 vs 12.0%). Furthermore, we investigated the localization and expression pattern of E-cadherin at 4-cell stage porcine embryos in both LPA- and Y27632-treated groups by immunocytochemical analysis and Western blot analysis. The expression of E-cadherin was increased in LPA-treated group compared to that in the Y27632-treated group. The localization of E-cadherin in LPA-treated group was enriched in part of blastomere contacts compared to that Y27632-treated group. ROCK-1 as a crucial mediator of embryo compaction may plays an important role in regulating compaction through E-cadherin of the cell adhesion during the porcine preimplantation embryo. We concluded that ROCK-1 gene may affect the developmental potential of porcine blastocysts through regulating embryonic compaction.

Differential expression of the enzymes regulating myosin light chain phosphorylation are responsible for the slower relaxation of pulmonary artery than mesenteric artery in rats

  • Seung Beom Oh;Suhan Cho;Hyun Jong Kim;Sung Joon Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권1호
    • /
    • pp.49-57
    • /
    • 2024
  • While arterial tone is generally determined by the phosphorylation of Ser19 in myosin light chain (p-MLC2), Thr18/Ser19 diphosphorylation of MLC2 (pp-MLC2) has been suggested to hinder the relaxation of smooth muscle. In a dual-wire myography of rodent pulmonary artery (PA) and mesenteric artery (MA), we noticed significantly slower relaxation in PA than in MA after 80 mM KCl-induced condition (80K-contraction). Thus, we investigated the MLC2 phosphorylation and the expression levels of its regulatory enzymes; soluble guanylate cyclase (sGC), Rho-A dependent kinase (ROCK) and myosin light chain phosphatase target regulatory subunit (MYPT1). Immunoblotting showed higher sGC-α and ROCK2 in PA than MA, while sGC-β and MYPT1 levels were higher in MA than in PA. Interestingly, the level of pp-MLC2 was higher in PA than in MA without stimulation. In the 80K-contraction state, the levels of p-MLC2 and pp-MLC2 were commonly increased. Treatment with the ROCK inhibitor (Y27632, 10 µM) reversed the higher pp-MLC2 in PA. In the myography study, pharmacological inhibition of sGC (ODQ, 10 µM) slowed relaxation during washout, which was more pronounced in PA than in MA. The simultaneous treatment of Y27632 and ODQ reversed the impaired relaxation in PA and MA. Although treatment of PA with Y27632 alone could increase the rate of relaxation, it was still slower than that of MA without Y27632 treatment. Taken together, we suggest that the higher ROCK and lower MYPT in PA would have induced the higher level of MLC2 phosphorylation, which is responsible for the characteristic slow relaxation in PA.

Efficacy of biological inhibitors in three-dimensional culture models of oral squamous cell carcinoma

  • Eun Kyoung Kim;Sook Moon;Myung-Jin Lee;Dokyeong Kim
    • International Journal of Oral Biology
    • /
    • 제49권1호
    • /
    • pp.18-25
    • /
    • 2024
  • Despite advancements in therapeutic approaches, radiotherapy and cisplatin-based chemotherapy remain primary noninvasive treatments for patients with oral squamous cell carcinoma (OSCC). Moreover, the 5-year survival rate for patients with OSCC has remained almost unchanged for several decades, and many side effects of chemotherapy still exist. In this study, three-dimensional (3D) models of OSCC were established using fibroblasts, and the efficacy of various biological inhibitors was evaluated. A culture of epithelial cells with two types of fibroblasts (hTERT-hNOFs and cancer-associated fibroblasts) within a type I collagen matrix resulted in the formation of a continuous layer of tightly packed cells compared to models without fibroblasts. Furthermore, the effects of biological chemicals, including Y27632, latrunculin A, and verteporfin, on these models were investigated. The stratified formation of the epithelial layer and invasion in OSCC 3D-culture models were effectively inhibited by verteporfin, whereas invasion was weakly inhibited by Y27632 and latrunculin. Collectively, the developed OSCC 3D-culture models established with fibroblasts demonstrated the potential for drug screening, with verteporfin showing promising efficacy.

인간 배아줄기세포의 생식세포로의 분화 및 효소에 의해 분리된 단일줄기세포 배양조건 (Differentiation of Human Embryonic Stem Cells into Germ Cell and Culture Condition for Single Embryonic Stem Cells Dissociated by Enzyme)

  • 지희준;최순영;정다연
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제37권1호
    • /
    • pp.13-23
    • /
    • 2010
  • 목 적: 본 연구는 인간 배아줄기세포를 생식세포로의 분화를 유도하고 효소에 의해 분리된 단일 배아줄기세포의 배양조건을 확립하기 위해 수행하였다. 연구방법: Embryonic body (EB)는 배아줄기세포 (hESCs) colony를 떼어내어 3일간 hanging drop culture 방법으로 작성하였고, 이러한 EB를 retionic acid (RA)와 bone morphogenetic protein-4 (BMP4)를 단독 또는 함께 배양액에 첨가하여 14일간 배양함으로써 생식세포로의 분화를 유도하였다. 분화를 유도한 EB는 생식세포 발현유전자인 c-kit과 VASA의 표지인자를 이용한 면역조직형광법으로 분화여부를 조사하였다. 줄기세포는 Collagenase, Tryple 그리고 Accutase 등의 효소로 각각 분리하였고 분리된 단일세포들의 colony formation rate를 조사하였다. 한편 Rho-associated kinase inhibitor (Y-27632)를 단일세포 배양액에 첨가하여 단일세포 분리과정 중에 발생하는 apoptotic damage를 감소시키고자 하였다. 결 과: Tryple 또는 Accutase를 이용하여 분리한 단일세포가 Collagenase에 의해 분리된 세포에 비해 높은 colony formation rate를 나타내었다. 단일세포를 $5{\times}10^3$ cells/well (4 well dish) 농도로 지지세포 위에 seeding하였을 때 다른 농도의 세포를 seeding한 것에 비해 높은 colony formation rate를 확보하는데 효과적이었다. Y27632의 첨가는 단일세포의 colony formation rate를 유의하게 향상시켰으며 특히 Tryple로 분리한 단일세포에 보다 효과적이었다. EB의 분화유도후 c-kit과 VASA의 표지인자를 이용한 면역조직형광염색은 대조군인 정소조직에 비해 약한 형광염색을 나타내었다. 결 론: Tryple을 이용한 단일세포 분리가 건강한 단일세포를 얻는데 가장 효율적이었으며 Y27632 의 첨가는 단일 세포의 생존 및 colony formation에 유익하다는 것을 확인하였다. 다른 연구와는 달리 본 연구에서는 단지 생식세포 표지인자의 희미한 형광염색만을 관찰하였는데 이러한 결과는 본 연구의 분화유도기간이 상대적으로 짧았던 것이 원인이었을 것으로 생각된다.

A Comparison of ROCK Inhibitors on Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Neuron-Like Cells

  • Lee, Hyun-Sun;Kim, Kwang-Sei;O, Eun-Ju;Joe, Young-Ae
    • Biomolecules & Therapeutics
    • /
    • 제18권4호
    • /
    • pp.386-395
    • /
    • 2010
  • Bone marrow-derived mesenchymal stem cells (BM-MSC) are a multipotent cell population that can differentiate into neuron-like cells. Previously it has been reported that murine BM-MSC can differentiate into neuron-like cells by co-treatment with a Rho-associated kinase (ROCK) inhibitor -Y27632 and $CoCl_2$. In this study, we compared several ROCK inhibitors for the ability to induce human BM-MSCs to differentiate into neuron-like cells in the presence of $CoCl_2$. Y27632 with high specificity for ROCK at 1-30 ${\mu}M$ was best at inducing neuronal differentiation of MSCs. Compared to HA1077 and H1152, which also effectively induced morphological change into neuron-like cells, Y27632 showed less toxicity even at 100 ${\mu}M$, and resulted in longer multiple branching processes at a wide range of concentrations at 6 h and 72 h post-induction. H89, however, which has less specificity by inhibition of protein kinase A, S6 kinase 1 and MSK1 with similar or greater potency, was less effective at inducing neuronal differentiation of MSCs. Simvastatin, which can inhibit Rho, Ras, and Rac by blocking the synthesis of isoprenoid intermediates, showed little activity for inducing morphological changes of MSCs into neuron-like cells. Accordingly, the expression patterns for neuronal cell markers,including ${\beta}$-tubulin III, neuron-specific enolase, neurofilament, and microtubule-associated protein, were consistent with the pattern of the morphological changes. The data suggest that the ROCK inhibitors with higher specificity are more effective at inducing neuronal differentiation of MSCs.

Lysophosphatidylcholine induces azurophil granule translocation via Rho/Rho kinase/F-actin polymerization in human neutrophils

  • Ham, Hwa-Yong;Kang, Shin-Hae;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권3호
    • /
    • pp.175-182
    • /
    • 2022
  • Translocation of azurophil granules is pivotal for bactericidal activity of neutrophils, the first-line defense cells against pathogens. Previously, we reported that lysophosphatidylcholine (LPC), an endogenous lipid, enhances bactericidal activity of human neutrophils via increasing translocation of azurophil granules. However, the precise mechanism of LPC-induced azurophil granule translocation was not fully understood. Treatment of neutrophil with LPC significantly increased CD63 (an azurophil granule marker) surface expression. Interestingly, cytochalasin B, an inhibitor of action polymerization, blocked LPC-induced CD63 surface expression. LPC increased F-actin polymerization. LPC-induced CD63 surface expression was inhibited by both a Rho specific inhibitor, Tat-C3 exoenzyme, and a Rho kinase (ROCK) inhibitor, Y27632 which also inhibited LPC-induced F-actin polymerization. LPC induced Rho-GTP activation. NSC23766, a Rac inhibitor, however, did not affect LPC-induced CD63 surface expression. Theses results suggest a novel regulatory mechanism for azurophil granule translocation where LPC induces translocation of azurophil granules via Rho/ROCK/F-actin polymerization pathway.

[$Ca^{2+}$ Sensitization Mechanism in Stretch-induced Myogenic Tone

  • Kim, Jung-Sup;Ryu, Sung-Kyung;Ahn, Duck-Sun;Kang, Bok-Soon;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권1호
    • /
    • pp.33-39
    • /
    • 2002
  • It has been suggested that $Ca^{2+}$ sensitization mechanisms might contribute to myogenic tone, however, specific mechanisms have not yet been fully identified. Therefore, we investigated the role of protein kinase C (PKC)- or RhoA-induced $Ca^{2+}$ sensitization in myogenic tone of the rabbit basilar vessel. Myogenic tone was developed by stretch of rabbit basilar artery. Fura-2 $Ca^{2+}$ signals, contractile responses, PKC immunoblots, translocation of PKC and RhoA, and phosphorylation of myosin light chains were measured. Stretch of the resting vessel evoked a myogenic contraction and an increase in the intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ only in the presence of extracellular $Ca^{2+}$. Stretch evoked greater contraction than high $K^+$ at a given $[Ca^{2+}]_i.$ The stretch-induced increase in $[Ca^{2+}]_i$ and contractile force were inhibited by treatment of the tissue with nifedipine, a blocker of voltage-dependent $Ca^{2+}$ channel, but not with gadolinium, a blocker of stretch-activated cation channels. The PKC inhibitors, H-7 and calphostin C, and a RhoA-activated protein kinase (ROK) inhibitor, Y-27632, inhibited the stretch-induced myogenic tone without changing $[Ca^{2+}]_i.$ Immunoblotting using isoform-specific antibodies showed the presence of $PKC_{\alpha}$ and $PKC_{\varepsilon}$ in the rabbit basilar artery. $PKC_{\alpha},$ but not $PKC_{\varepsilon},$ and RhoA were translocated from the cytosol to the cell membrane by stretch. Phosphorylation of the myosin light chains was increased by stretch and the increased phosphorylation was blocked by treatment of the tissue with H-7 and Y-27632, respectively. Our results are consistent with important roles for PKC and RhoA in the generation of myogenic tone. Furthermore, enhanced phosphorylation of the myosin light chains by activation of $PKC_{\alpha}$ and/or RhoA may be key mechanisms for the $Ca^{2+}$ sensitization associated with myogenic tone in basilar vessels.