• Title/Summary/Keyword: Xylan

Search Result 309, Processing Time 0.022 seconds

Xylanase Production by Bacillus sp. A-6 Isolated from Rice Bran

  • Lee, Jun-Ho;Choi, Suk-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1856-1861
    • /
    • 2006
  • A Bacillus sp. A-6 strain that produced xylanase was isolated from rice bran. The optimal temperature and pH for xylanase activity of the culture supernatant of Bacillus sp. A-6 were 40$^{\circ}C$ and pH 7, respectively. The optimal temperature and pH for xylanase production in the xylan medium were 30$^{\circ}C$ and pH 9, respectively. The optimal concentrations of oat spelt xylan and peptone for xylanase production were 0.5% and 1.5%, respectively. The best nitrogen sources for xylanase production was beef extract, but xylanase production was also supported comparably by tryptone and peptone. The bacterial growth in the optimal xylan medium reached stationary growth phase after 12 h of incubation. The xylanase production in the culture supernatant increased dramatically during the initial 12 h exponential growth phase and then remained constant at 23.8-24.5 unit/ml during the stationary growth phase. The pH of the culture medium decreased from 8.8 to 6.7 during the exponential growth phase and subsequently increased to 8.1 during the stationary growth phase. Rice bran, sorghum bran, and wheat bran as well as oat spelt xylan induced xylanase production. The xylanase production was repressed when glucose was added to the xylan-containing medium.

Novel Endoxylanases of the Moderately Thermophilic Polysaccharide-Degrading Bacterium Melioribacter roseus

  • Rakitin, Andrey L.;Ermakova, Alexandra Y.;Ravin, Nikolai V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1476-1484
    • /
    • 2015
  • Three endoxylanase-encoding genes from the moderately themophilic chemoorganotrophic bacterium Melioribacter roseus were cloned and expressed in Escherichia coli. Genes xyl2091 (Mros_2091) and xyl2495 (Mros_2495) encode GH10 family hydrolases, whereas xyl2090 (Mros_2090) represents the GH30 family. In addition to catalytic domains, Xyl2090 and Xyl2091 contain carbohydrate-binding modules that could facilitate their binding to xylans and Por sorting domains associated with the sorting of proteins from the periplasm to the outer membrane, where they are covalently attached. Recombinant endoxylanase Xyl2495 exhibited a high specific activity of 1,920 U/mg on birchwood xylan at 40℃. It is active at low temperatures, exhibiting more than 30% of the maximal activity even at 0℃. Endoxylanases Xyl2090 and Xyl2091 have lower specific activities but higher temperature optima at 80℃ and 65℃, respectively. Analysis of xylan hydrolysis products revealed that Xyl2090 generates xylo-oligosaccharides longer than xylopentaose. Xylose and xylobiose are the major products of xylan hydrolysis by the recombinant Xyl2091 and Xyl2495. No activity against cellulose was observed for all enzymes. The presence of three xylanases ensures efficient xylan hydrolysis by M. roseus. The highly processive "free" endoxylanase Xyl2495 could hydrolyze xylan under moderate temperatures. Xylan hydrolysis at elevated temperatures could be accomplished by concerted action of two cell-bound xylanases; Xyl2090 that probably degrades xylans to long xylo-oligosaccharides, and Xyl2091 hydrolyzing them to xylose and xylobiose. The new endoxylanases could be useful for saccharification of lignocellulosic biomass in biofuels production, bleaching of paper pulp, and obtaining low molecular weight xylooligosaccharides.

Characterization and Xylanase Productivity of Streptomyces sp. YB914 (Xylanase를 생산하는 Streptomyces sp. YB914의 특성과 효소 생산성)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.383-388
    • /
    • 2009
  • A strain YB914 was isolated from soil as a producer of the extracellular xylanase, which catalyzes the hydrolysis of oat spelt xylan. The strain YB914 was identified as Streptomyces sp. on the basis of its morphological, cultural and biochemical properties. The xylanase of culture filtrate was the most active at $55^{\circ}C$ and pH 5.5, and retained 80% of its maximum activity at the range of pH 4.5~7.0. In order to optimize the culture medium for xylanase production, ingredients of G.S.S medium were replaced by several carbohydrates. The carbohydrates such as oat spelt xylan, corn cob xylan, wheat bran and lactose increased the xylanase productivity of Streptomyces sp. YB914. However, xylanase production was greatly repressed by galactose or arabinose. The maximum xylanase productivity was reached to 48 U/mL in the modified medium containing 1% oat spelt xylan and 1.5% lactose.

Production of Xylanase by Bacillus sp. DSNC 101 (Bacillus sp. DSNC 101에 의한 Xylanase 생산)

  • 조남철
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.3
    • /
    • pp.344-349
    • /
    • 1997
  • A strain of Bacillus sp. DSNC 101, isolated from soil, produced up to 305.0 units/ml of xylanase when grown on te medium containing 2.0% xylan, 2.0% yeast extract and 0.4% K2HPO4. The strain produced xylanase in the presence of xylan, soluble starch, rice straw, Avicel, maltose, and lactose as a sole carbon source, but the enzyme was not synthesized in the presence of xylose, glucose or arabinose. The crude xylanase preparation did not show hydrolytic activity towards cellulosic substrates and PNPX, a chromogenic substrate for $\beta$-xylosidase. The temperature and pH optima for the xylanase production were 4$0^{\circ}C$ and 8.0, respectively. Xylanase synthesis was repressed by glucose, but not by xylose. The hydrolysis products of xylan catalyzed with the culture filtrate were xylooligosaccharides such as xylobiose and xylotriose but xylose was not detected by tin layer chromatography.

  • PDF

Xylan Hydrolysis by Treatment with Endoxylanase and $\beta$-Xylosidase Expressed in Yeast

  • Heo, Sun-Yeon;Kim, Joong-Kyun;Kim, Young-Man;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.171-177
    • /
    • 2004
  • The endoxylanase (642 bp; 213 amino acids) and $\beta$-xylosidase (1,602 bp; 533 amino acids) genes from Bacillus sp. were amplified by PCR and separately inserted into the downstream of the yeast ADH1 promoters, resulting in the pAEDX-1 (7.63 kb) and pAEX (8.47 kb) plasmids, respectively. When the yeast transformants, S. cerevisiae SEY2102 harboring pAEDX-1 or pAEX, were grown on YPD medium, the total activities of the enzymes were approximately 9.8 unit/ml for endoxylanase and 2.9 unit/m1 for $\beta$-xylosidase. When the three kinds of xylan from oat spelts, birch wood, and corncob were hydrolyzed by treating with recombinant endoxylanase and $\beta$-xylosidase, it was found that xylose, xylobiose, and xylotriose were produced. To efficiently hydrolyze xylan, various reaction conditions such as amount of enzymes, substrate type, substrate concentration, temperature, and reaction time were examined. The optimized conditions for the hydrolysis of xylan were as follows: amount of endoxylanase, 10 units; amount of $\beta$-xylosidase, 10 units; temperature, $50^\circ{C}$; substrate type, oat spelts xylan; substrate concentration, 6%; reaction time, 1 h. Under the optimal condition, xylose was mainly produced from oat spelts xylan by cooperative action of endoxylanase and $\beta$-xylosidase.

Purification and Characterization of Acetyl Xylan Esterase from Escherichia coli Cells Harboring the Recombinant Plasmid pKMG6 (제조합 균주 Escherochia coli가 생산하는 Bacillus stearothermophilus Acetyl Xylan Esterase의 정제 및 특성)

  • 김인숙;이철우;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.507-514
    • /
    • 1994
  • Acetyl xylan esterase was produced by E. coli HB101 harboring a recombinant plasmid pKMG6 which contained the estI gene of Bacillus stearothermophilus. The maximum production was observed when the E. coli strain was grown at 37$\circC for 12 hours in the medium containing 0.5% acetyl xylan, 1.0% tryptons, 1.0% sodium chloride, and 0.5% yeast extract. The esterase produced was purified to homogeneity using a combination of ammonium sulfate fractionation, DEAE Sepharose CL-6B ion exchange chromatography and Sephacryl S-200 gel filtration. The native enzyme had an apparent molecular mass of 60 kd and was composed of two identical subunits of 29 kd. The N-terminal amino acid sequence of the polypeptide was Ala-X-Leu-Gln- Ile-Gln-Phe-X-X-Gln. The acetyl esterase displayed a pH optimum of 6.5 and a temperature opti- mum of 45$\circC. The heavy metal ions such as Ag$^{++}$, Hg$^{++}$ and Cu$^{++}$ inhibited nearly completely the activity of the esterase, and no specific metal ion was found to be required for the enzyme activity. The enzyme readily cleaved MAS, $\beta$-D-glucose pentaacetate, $\alpha$-naphthyl acetate, $\rho$-nitrophenyl acetate as well as acetyl xylan, but had no activity on $\rho$-nitrophenyl propionate, $\beta$-nitrophenyl butyrate or $\beta$-nitrophenyl valerate. The Km and Vmax values for MAS were 2.87 mM and 11.55 $\mu$mole/min, respectively. Synergistic behavior was demonstrated with a combination of xylanase and esterase from B. stearothermophilus in hydrolyzing acetyl xylan.

  • PDF

Studies on the Xylans of Tropical Hardwoods (III) - Property of Purified Xylan - (열대산활엽수재(熱帯産闊葉樹材)의 Xylan에 관(関)한 연구(硏究) (III) - 정제(精製) Xylan의 성상(性状) -)

  • Lee, Jong Yoon
    • Journal of Korean Society of Forest Science
    • /
    • v.56 no.1
    • /
    • pp.77-81
    • /
    • 1982
  • The property of four tropical hardwoods were analyzed. xylans, extracted with 24% of potassium hydroxide and purified according to ethanol titration procedure, were examined for Pn, the uronic acid, methoxyl groups and acetyl groups content. Only mangrove, whose xylan content is similar to that of hardwoods in the temperature zone, had the ratio of units of xylose residue to the units of uronic acid residue as high as that of hardwoods in the temperature zone. Content of methoxyl groups showed the same result as uronic acid residue content. Various hemicellulose including D-xylose residue were contained in xylans extracted by D M S O. Acetyl groups content was compressed of 5.4% of M D X and 6.8% of R D X. Xylans unextracted by D M S O had acetyl groups. Pn measured by the viscosity method was about 200 and similar to the hardwood xylans of temperature zone. DPn calculated by uronic acid residue was similar to that of tropical zone.

  • PDF

Hydrolysis of Agricultural Residues and Kraft Pulps by Xylanolytic Enzymes from Alkaliphilic Bacillus sp. Strain BK

  • Kaewintajuk Kusuma;Chon Gil-Hyong;Lee Jin-Sang;Kongkiattikajorn Jirasak;Ratanakhanokchai Khanok;Kyu Khin Lay;Lee John-Hwa;Roh Min-Suk;Choi Yun-Young;Park Hyun;Lee Yun-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1255-1261
    • /
    • 2006
  • An alkaliphilic bacterium, Bacillus sp. strain BK, was found to produce extracellular cellulase-free xylanolytic enzymes with xylan-binding activity. Since the pellet-bound xylanase is eluted with 2% TEA from the pellet of the culture, they contain a xylan-binding region that is stronger than the xylan-binding xylanase of the extracellular enzyme. The xylanases had a different molecular weight and xylan-binding ability. The enzyme activity of xylanase in the extracellular fraction was 6 times higher than in the pellet-bound enzyme. Among the enzymes, xylanase had the highest enzyme activity. When Bacillus sp. strain BK was grown in pH 10.5 alkaline medium containing xylan as the sole carbon source, the bacterium produced xylanase, arabinofuranosidase, acetyl esterase, and $\beta$-xylosidase with specific activities of 1.23, 0.11, 0.06, and 0.04 unit per mg of protein, respectively. However, there was no cellulase activity detected in the crude enzyme preparation. The hydrolysis of agricultural residues and kraft pulps by the xylanolytic enzymes was examined at 50$^{\circ}C$ and pH 7.0. The rate of xylan hydrolysis in com hull was higher than those of sugarcane bagasse, rice straw, com cop, rice husk, and rice bran. In contrast, the rate of xylan hydrolysis in sugarcane pulp was 2.01 and 3.52 times higher than those of eucalyptus and pine pulp, respectively. In conclusion, this enzyme can be used to hydrolyze xylan in agricultural residues and kraft pulps to breach and regenerate paper from recycled environmental resources.

Biochemical Characterization of an Extracellular Xylanase from Aestuariibacter sp. PX-1 Newly Isolated from the Coastal Seawater of Jeju Island in Korea (대한민국 제주도 연안 해수에서 새롭게 분리한 Aestuariibacter sp. PX-1이 생산하는 자일라네이즈의 생화학적 특성)

  • Kim, Jong-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.215-222
    • /
    • 2020
  • The marine microorganism PX-1, which can hydrolyze xylan, was isolated from coastal sea water of Jeju Island, Korea. Based on the 16S rRNA gene sequence and chemotaxonomy analysis, PX-1 was identified as a species of the genus Aestuariibacter and named Aestuariibacter sp PX-1. From the culture broth of PX-1, an extracellular xylanase was purified to homogeneity through ammonium sulfate precipitation and subsequent adsorption chromatography using insoluble xylan. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography estimated the molecular weight of the purified putative xylanase (XylA) as approximately 64 kDa. XylA showed xylanase activity toward beechwood xylan, with a maximum enzymatic activity at pH 6.0 and 45℃. Through thin-layer chromatographic analysis of the xylan hydrolysate produced by XylA, it was confirmed that XylA is an endo-type xylanase that decomposes xylan into xylose and xyloligosaccharides of various lengths. The Km and Vmax values of XylA for beechwood xylan were 27.78 mM and 78.13 μM/min, respectively.

Synergic Effects among Endo-xylanase, $\beta$-Xylosidase, and $\alpha$-L-Arabinofuranosidase from Bacillus stearothermophilus

  • Suh, Jung Han;Ssang Goo Cho;Yong Jin Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.179-183
    • /
    • 1996
  • Synergism among endo-xylanase, $\beta$-xylosidase, and $\alpha$-L-arabinofuranosidase from Bacillus stearothermophilus upon xylan hydrolysis was investigated by using birchwood, oat spelt, and arabinoxylan as substrates. Endo-xylanase and $\beta$-xylosidase showed the cooperative action on all three substrates tested, revealing the fact that $\beta$-xylosidase assists endo-xylanase action in xylan hydrolysis by relieving the endproduct inhibition upon endo-xylanase conferred by xylooligomers. $\alpha$-L-Arabinofuranosidase also exhibited synergic effects with endo-xylanase and $\beta$-xylosidase on oat spelt and arabinoxylan, which contained significant amounts of arabinose side chains, whereas no synergism was detected on birchwood xylan which had only trace amounts of the side chain. Thus, the hydrolysis of xylan containing arabinose side chains required $\alpha$-L-arabinofuranosidase as well as endo-xylanase and $\beta$-xylosidase for the better hydrolysis of the substrates, and these enzymes work cooperatively in order to maximize the extent and rate of xylan hydrolysis.

  • PDF